双语矩阵论课程笔记(2)—— 【chapter 1】 Vector Spaces (Linear Spaces)

  • 双语矩阵论课程笔记

1. Definitions and Examples

1.1 Number filed(数域)

  • A number filed F is a set of numbers containing at least 0 and 1 and is closed under addition, subtraction, multiplication and division, which means following properties are satisfied:
    ∀ a ∈ F , − a ∈ F ∀ b ∈ F , b ≠ 0 , b − 1 ∈ F ∀ a , b ∈ F , a + b ∈ F , ∀ a , b ∈ F , a ⋅ b ∈ F \begin{aligned} &\forall a \in F &&,-a\in F \\ &\forall b \in F, b\neq 0 &&,b^{-1} \in F \\ &\forall a,b \in F &&,a+b\in F, \\ &\forall a,b \in F &&,a·b\in F \end{aligned} aFbF,b=0a,bFa,bF,aF,b1F,a+bF,,abF
  • for example, the real number filed R(实数域) is a number filed, it contains real number 0 and 1, and closed under arithmetic(对四则运算封闭)
  • 域、群、环等概念,其实都是具有一些好的性质的集合。数域是针对数的域,其元素是实数、复数、有理数等等各种数

1.2 Algebraic systems(代数系统)

  • An algebraic system is usually referred to as a set in which some operation together with some rules are defined. To describe an algebraic system, we need

    1. a set of elements(Given)
    2. operations(Well Defined)
    3. rules of operation(deduced)
  • note:

    1. the elements in the set can be anything,number、function、matrix…
    2. well defined means the result of any operation is unique. You can view the operation as a mapping, and well define means that any element can only be mapped to a unique element
    3. with the rules of operation, we can deduce the properties of the algebraic system
  • examples:Pay attention to example 4 and example 5, the set of them is set of function, so the addition operation represented as ( f + g ) ( x ) (f+g)(x) (f+g)(x)
    在这里插入图片描述在这里插入图片描述

    在这里插入图片描述在这里插入图片描述在这里插入图片描述

1.3 Linear space / Vector space(线性空间 / 向量空间)

1.3.1 Definition

  • Linear space/vector space:A set V ( V ≠ ∅ ) \pmb{V}(\pmb{V} \neq \empty) VVV(VVV=) over a number filed F \pmb{F} FFF is a set of elements together with two operations, addition(加法) and and scalar multiplication(数乘), if V \pmb{V} VVV satisfies the following conditions, it’s a linear space/vector space
    1. closure properties(封闭性):

      1. ∀ α , β ∈ V , α + β ∈ V \forall \alpha,\beta \in \pmb{V}, \alpha+\beta \in \pmb{V} α,βVVV,α+βVVV is unique
      2. ∀ k ∈ F , α ∈ V ,   k ⋅ α ∈ V \forall k \in \pmb{F}, \alpha\in \pmb{V},\space k·\alpha\in \pmb{V} kFFF,αVVV, kαVVV is unique
        在这里插入图片描述
        说明:这里的加法运算 addition 没有什么要求,可以定义任意 V \pmb{V} VVV 上的运算作为 “addition”,但是数乘运算 scalar multiplication 要求必须是从数域 F \pmb{F} FFF 中取一个数和 V \pmb{V} VVV 中元素做数乘,Linear space V \pmb{V} VVV over a filed F \pmb{F} FFF 指的就是这个。封闭性要求这两个运算的结果都在 V \pmb{V} VVV
    2. The addition axioms(加法公理):
      在这里插入图片描述

    3. The scalar multiplication axioms(乘法公理):
      在这里插入图片描述

  • 特殊元素:
    元素性质
    加法零元 (zero element) 0 ∈ V \pmb{0} \in \pmb{V} 000VVV ∀ α ∈ V ,   0 + α = α \forall \alpha \in \pmb{V}, \space \pmb{0}+\alpha = \alpha αVVV, 000+α=α
    加法负元 (additive inverse) − α ∈ V -\alpha \in \pmb{V} αVVV ∀ α ∈ V \forall \alpha \in \pmb{V} αVVV ∃ − α ∈ V \exists -\alpha\in\pmb{V} αVVV,S.t. α + ( − α ) = 0 \alpha+(-\alpha) = \pmb{0} α+(α)=000
    乘法幺元 (unit element) 1 ∈ F 1 \in \pmb{F} 1FFF ∀ α ∈ V ,   1 ⋅ α = α \forall \alpha \in \pmb{V}, \space 1·\alpha = \alpha αVVV, 1α=α

1.3.2 Remark on Linear space

  • Important things to remember:In the definition of linear linear space, we need

    1. a set V ≠ ∅ \pmb{V} \neq \empty VVV=
    2. a number filed F \pmb{F} FFF
    3. two operations (addition & scalar multiplication; well-defined and closed)
    4. eight operation rules

    when you do scalar multiplication, the scalar must come from the filed F \pmb{F} FFF

  • there are some rules derived from the definition:If V \pmb{V} VVV is a linear space over the filed F \pmb{F} FFF, and α ∈ V , k ∈ F \alpha \in \pmb{V}, k\in\pmb{F} αVVV,kFFF,then

    1. 0 \pmb{0} 000 is unique
    2. 0 ⋅ α = 0 0·\alpha = \pmb{0} 0α=000
    3. k ⋅ 0 = 0 k·\pmb{0} = \pmb{0} k000=000
    4. α + β = 0 ⇒ β = − α \alpha +\beta = \pmb{0} \Rightarrow \beta = -\alpha α+β=000β=α(i.e. the addition inverse is unique
    5. ( − 1 ) ⋅ α = − α (-1)·\alpha = -\alpha (1)α=α
    6. k ⋅ α = 0 , k ∈ F , α ∈ V ⇒ k = 0    o r    α = 0 k·\alpha = \pmb{0}, k\in \pmb{F}, \alpha\in \pmb{V} \Rightarrow k=0 \space\space or \space\space \alpha = \pmb{0} kα=000,kFFF,αVVVk=0  or  α=000
  • 证明一下第2条
    ∵ 0 ⋅ α + ( − 0 ⋅ α ) = ( 0 + ( − 0 ) ) ⋅ α = ( − 0 ) ⋅ α ∴ 0 ⋅ α + ( − 0 ⋅ α ) + ( − ( − 0 ⋅ α ) ) = ( − 0 ⋅ α ) + ( − ( − 0 ⋅ α ) ) ∴ 0 ⋅ α + 0 = 0 ∴ 0 ⋅ α = 0 \begin{aligned} &\because 0·\alpha + (-0·\alpha) = (0+(-0))·\alpha =(-0)·\alpha \\ &\therefore 0·\alpha + (-0·\alpha) +(-(-0·\alpha)) = (-0·\alpha) +(-(-0·\alpha)) \\ &\therefore 0·\alpha +\pmb{0}= \pmb{0} \\ &\therefore 0·\alpha = \pmb{0} \end{aligned} 0α+(0α)=(0+(0))α=(0)α0α+(0α)+((0α))=(0α)+((0α))0α+000=0000α=000

1.3.3 Verify a linear space

  • How to verify a linear space?
    1. Find out the number field F and the set V
    2. What are the two operations?
    3. satisfy the Closure property?
    4. satisfy the 8 rules?
  • Example 1
    在这里插入图片描述
  • Example 2: c [ a . b ] c[a.b] c[a.b] is a set of continuous functions on interval [a,b], is it a linear space ?
    在这里插入图片描述

2. Linear Dependence and Independence(线性相关和线性无关)

2.1 Basic concept

2.1.1 Linear combinations of vectors(线性组合)

  • V \pmb{V} VVV is a linear space over F \pmb{F} FFF, there are { α 1 , α 2 , . . . , α n ∈ V k 1 , k 2 , . . . , k n ∈ F \left\{ \begin{aligned}\alpha_1,\alpha_2,...,\alpha_n \in \pmb{V} \\ k_1,k_2,...,k_n \in \pmb{F}\end{aligned}\right. {α1,α2,...,αnVVVk1,k2,...,knFFF, a linear combination(线性组合) of α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn is
    k 1 α 1 + k 2 α 2 + . . . + k n α n k_1\alpha_1+k_2\alpha_2+...+k_n\alpha_n k1α1+k2α2+...+knαn

2.1.2 linearly represented(线性表示)

  • Given two elements groups { ( I ) : α 1 , α 2 , . . . , α n ∈ V ( I I ) : β 1 , β 2 , . . . , β s ∈ V \left\{ \begin{aligned}(\mathrm{I}):\alpha_1,\alpha_2,...,\alpha_n \in \pmb{V} \\ (\mathrm{II}):\beta_1,\beta_2,...,\beta_s \in \pmb{V}\end{aligned}\right. {(I):α1,α2,...,αnVVV(II):β1,β2,...,βsVVV, if each element in group ( I ) (\mathrm{I}) (I) is a combination of group ( I I ) (\mathrm{II}) (II), we call the former can be linearly represented(线性表示) by the later.
  • If two groups can be represented by each other, they are called equivalent(相抵/等价), which is
    1. reflexive(有自反性:自己和自己等价)
    2. symmetric(有对称性: ( I ) (\mathrm{I}) (I) ( I I ) (\mathrm{II}) (II) 等价 ⇒ \Rightarrow ( I I ) (\mathrm{II}) (II) ( I ) (\mathrm{I}) (I) 等价)
    3. transitive(有传递性: ( I ) (\mathrm{I}) (I) ( I I ) (\mathrm{II}) (II) 等价, ( I I ) (\mathrm{II}) (II) ( I I I ) (\mathrm{III}) (III) 等价 ⇒ \Rightarrow ( I ) (\mathrm{I}) (I) ( I I I ) (\mathrm{III}) (III) 等价)

2.1.3 linear dependence and Independence(线性相关和线性无关)

  • 有一组不全为0的系数 k k k 使得向量组 α \alpha α线性组合为零向量 0 \pmb{0} 000,则向量组 α \alpha α 线性相关,反之线性无关
    在这里插入图片描述
  • 注意:线性空间 V \pmb{V} VVV 中的元素不一定是向量,也可能是数、抽象函数…等等,因为它本质是一种特殊的 Algebraic systems 代数系统。后面3.2.1节中,我们会说明这些元素和通常意义上的向量有一一对应关系,因此习惯上称这些元素 α ∈ V \alpha\in \pmb{V} αVVV 为向量(vector)

2.2 Theorem and corollary

  • Theorems:
    1. Suppose that V \pmb{V} VVV is a linear space over P P P. A group of elements α 1 , α 2 , . . . , α r ( r ≥ 2 ) \alpha_1,\alpha_2,...,\alpha_r(r\geq 2) α1,α2,...,αr(r2) are linear dependent if and only if there is at least one element that can be written as a linear combination of the others
      若线性相关,则至少有一个向量可以被其他的线性表出
    2. Suppose that α 1 , α 2 , . . . , α r \alpha_1,\alpha_2,...,\alpha_r α1,α2,...,αr are linearly independent and can be linearly represented by β 1 , β 2 , . . . , β s \beta_1,\beta_2,...,\beta_s β1,β2,...,βs, then r ≤ s r\leq s rs
      一组线性无关向量,只能被数目多于等于它的另一组向量线性表出
    3. Assume that α 1 , α 2 , . . . , α r \alpha_1,\alpha_2,...,\alpha_r α1,α2,...,αr are linearly independent, while α 1 , α 2 , . . . , α r , β \alpha_1,\alpha_2,...,\alpha_r,\beta α1,α2,...,αr,β are linearly dependent, then β \beta β can be uniquely and linearly represented by α 1 , α 2 , . . . , α r \alpha_1,\alpha_2,...,\alpha_r α1,α2,...,αr
      一组线性无关的向量,增加一个之后变得线性相关了,多出的一定可以被其他的线性表出
  • corollary:
    1. The number of elements in two equivalent linear independence element groups are same
      两个等价向量组中向量个数相等
  • examples
    在这里插入图片描述在这里插入图片描述
    • 欲证明某向量组线性无关或相关,可使用定义法,先写出 ∑ i n k i α i = 0 \sum_i^n k_i\alpha_i =0 inkiαi=0 的形式,再说明 k i k_i ki 是否一定全为 0
    • 关于向量组线性相关性的更多性质和证明方法,请参考:线性代数(4)—— 向量与向量组的线性相关性

3. Basis and Dimension(基和维数)

3.1 Dimension(维数)

  • Definition: If there are n vectors in V \pmb{V} VVV are linearly independent and arbitrary n+1 vectors in V \pmb{V} VVV are linearly dependent, we call the dimension(维数) of V \pmb{V} VVV is n, denoted by d i m ( V ) = n \mathrm{dim}(V) = n dim(V)=n
  • special case that the dimension equals to 0 and ∞ \infin
    1. If V = { 0 } , t h e n   d i m ( V ) = 0 V=\{\pmb{0}\}, then\space \mathrm{dim}(V) = 0 V={000},then dim(V)=0
    2. If there are m m m linearly independent vectors in V \pmb{V} VVV for any integer m m m, we call V \pmb{V} VVV is infinity dimensional, denoted by d i m ( V ) = + ∞ \mathrm{dim}(V) = +\infin dim(V)=+. For example:实多项式集合
      在这里插入图片描述

3.2 Basis and coordinate(基和坐标)

3.2.1 Definition

  • Suppose that V \pmb{V} VVV is an n-dimensional linear space, if ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn is a linearly independent vector group in V \pmb{V} VVV, it is a basis(基,复数形式为bases) of V \pmb{V} VVV
  • ∀ α ∈ V \forall \alpha \in \pmb{V} αVVV can be uniquely linearly represented by the basis ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn that is
    在这里插入图片描述
    where the coefficients(系数) x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn are called coordinates(坐标) over the basis ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn, denoted by ( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn) or ( x 1 , x 2 , . . . , x n ) ⊤ (x_1,x_2,...,x_n)^\top (x1,x2,...,xn)
  • 注意,这里的 coordinates 是由 F \pmb{F} FFF 中的数组成的向量,因此 linear space V \pmb{V} VVV 中的任意一个元素都能通过一组 basis 唯一地映射为一个 vector(有一一对应关系), 这就是为什么 linear space 也叫做 vector space

3.2.2 Remark on basis

  1. Bases for a linear space are not unique.
    线性空间的基不唯一
    • For example, the set of cubic polynomials(三次多项式集合) P 4 P_4 P4 has a basis 1 , x , x 2 , x 3 1,x,x^2,x^3 1,x,x2,x3, we know this basis can be linearly represented by 1 , 2 x , 3 x 2 , 4 x 3 1,2x,3x^2,4x^3 1,2x,3x2,4x3, so that 1 , 2 x , 3 x 2 , 4 x 3 1,2x,3x^2,4x^3 1,2x,3x2,4x3 is also a basis of P 4 P_4 P4
  2. All bases for a linear space have the same number of elements (i.e. d i m ( V ) \mathrm{dim}(V) dim(V))
    同一线性空间的所有基,维数一致
  3. If ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn is a linearly independent vector group in V \pmb{V} VVV, and any vector in V \pmb{V} VVV can be uniquely linearly represented by it, then ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn is a basis of V \pmb{V} VVV
    如果一组线性无关向量可以线性表示Linear space中的所有向量,则它是一组基
    1. 根据2,求线性空间维数,等价于找到线性空间的一组基向量;根据3,求一组基向量,可以先找到一组向量,证明其线性无关,并且能唯一地表示空间中任意向量。2,3两者结合就能求出线性空间的维数

3.3.3 Transition Matrix(过渡矩阵)

  • Suppose that vector group ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn is a basis of linear space V \pmb{V} VVV ε 1 ′ , ε 2 ′ , . . . , ε n ′ \varepsilon_1',\varepsilon_2',...,\varepsilon_n' ε1,ε2,...,εn are n vectors in V \pmb{V} VVV,then there exists a matrix T ∈ P n × n \pmb{T}\in P^{n\times n } TTTPn×n such that
    ( ε 1 ′ , ε 2 ′ , . . . , ε n ′ ) = ( ε 1 , ε 2 , . . . , ε n ) T (\varepsilon_1',\varepsilon_2',...,\varepsilon_n') = (\varepsilon_1,\varepsilon_2,...,\varepsilon_n)\pmb{T} (ε1,ε2,...,εn)=(ε1,ε2,...,εn)TTT As mentioned above, the column vectors of T \pmb{T} TTT are the coordinates of vectors ε 1 ′ , ε 2 ′ , . . . , ε n ′ \varepsilon_1',\varepsilon_2',...,\varepsilon_n' ε1,ε2,...,εn over the basis ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn
  • T \pmb{T} TTT is reversible(可逆的) ⇔ \Leftrightarrow ε 1 ′ , ε 2 ′ , . . . , ε n ′ \varepsilon_1',\varepsilon_2',...,\varepsilon_n' ε1,ε2,...,εn is also a basis of V \pmb{V} VVV, cause
    ( ε 1 ′ , ε 2 ′ , . . . , ε n ′ ) T − 1 = ( ε 1 , ε 2 , . . . , ε n ) (\varepsilon_1',\varepsilon_2',...,\varepsilon_n') \pmb{T}^{-1}= (\varepsilon_1,\varepsilon_2,...,\varepsilon_n) (ε1,ε2,...,εn)TTT1=(ε1,ε2,...,εn) the basis ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn can be linear represented by ε 1 ′ , ε 2 ′ , . . . , ε n ′ \varepsilon_1',\varepsilon_2',...,\varepsilon_n' ε1,ε2,...,εn
  • Especially, when both ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn and ε 1 ′ , ε 2 ′ , . . . , ε n ′ \varepsilon_1',\varepsilon_2',...,\varepsilon_n' ε1,ε2,...,εn are basis of V \pmb{V} VVV, the matrix T \pmb{T} TTT is called the transition Matrix(过渡矩阵) from basis ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn to ε 1 ′ , ε 2 ′ , . . . , ε n ′ \varepsilon_1',\varepsilon_2',...,\varepsilon_n' ε1,ε2,...,εn (第一组基 x 过渡矩阵 = 第二组基)
  • ∀ α ∈ V \forall \alpha \in \pmb{V} αVVV, suppose the coordinates over the bases ε 1 , ε 2 , . . . , ε n \varepsilon_1,\varepsilon_2,...,\varepsilon_n ε1,ε2,...,εn and ε 1 ′ , ε 2 ′ , . . . , ε n ′ \varepsilon_1',\varepsilon_2',...,\varepsilon_n' ε1,ε2,...,εn are ( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn) and ( x 1 ′ , x 2 ′ , . . . , x n ′ ) (x_1',x_2',...,x_n') (x1,x2,...,xn) respectively, then
    在这里插入图片描述
  • 这一块就是说,对于空间中的某个向量,当使用不同的基来描述这个空间时,这个向量对应的坐标也不同。由于是同一个向量,不同基在其对应的坐标的下的线性组合都能得到它,即
    ( ε 1 ′ , ε 2 ′ , … , ε n ′ ) [ x 1 ′ x 2 ′ ⋮ x n ′ ] = [ ( ε 1 , ε 2 , … , ε n ) T ] [ T − 1 [ x 1 x 2 ⋮ x n ] ] = ( ε 1 , ε 2 , … , ε n ) [ x 1 x 2 ⋮ x n ] (\varepsilon_1',\varepsilon_2',\dots,\varepsilon_n')\begin{bmatrix}x_1'\\x_2'\\ \vdots \\x_n'\end{bmatrix} = \big[(\varepsilon_1,\varepsilon_2,\dots,\varepsilon_n)\pmb{T}\big]\big[\pmb{T}^{-1}\begin{bmatrix}x_1\\x_2\\ \vdots \\x_n\end{bmatrix} \big] = (\varepsilon_1,\varepsilon_2,\dots,\varepsilon_n)\begin{bmatrix}x_1\\x_2\\ \vdots \\x_n\end{bmatrix} (ε1,ε2,,εn)x1x2xn=[(ε1,ε2,,εn)TTT][TTT1x1x2xn]=(ε1,ε2,,εn)x1x2xn

3.3.4 Examples

  1. Consider V = { A ∈ R 2 × 2 ∣ A ⊤ = A } \pmb{V} = \{A\in R^{2\times 2}|A^\top = A\} VVV={AR2×2A=A}, prove that d i m ( V ) = 3 \mathrm{dim}(V) = 3 dim(V)=3
    在这里插入图片描述
    (这个证明还应当说明一下 ε \varepsilon ε 线性无关:当 ∑ i = 1 3 ε i k i = 0 \sum_{i=1}^3\varepsilon_ik_i = 0 i=13εiki=0 时, k i k_i ki 必定全 为0)
  2. Compute the dimensions of linear spaces
    在这里插入图片描述
  3. Find the transition matrix and compute the coordinate
    在这里插入图片描述
  4. Find the transition matrix
    在这里插入图片描述

4. Linear subspace(线性子空间)

4.1 Basic concept

4.1.1 linear subspace(线性子空间)

  • Suppose that V \pmb{V} VVV is a vector space on P P P, W ⊆ V W \subseteq V WV is not empty. If W W W is a vector space for the same two algebraic operation, we call W W W a linear subspace of V \pmb{V} VVV
    1. W ⊆ V W \subseteq V WV and W ≠ ∅ W \neq \empty W=
    2. W W W is a vector space for the same algebraic operation
  • trivial subspace (平凡子空间) of V \pmb{V} VVV
    1. V \pmb{V} VVV itself
    2. zero space V = { 0 } \pmb{V} = \{\pmb{0}\} VVV={000}

4.1.2 direct sum(直和)

  • 二分解:If V 1 \pmb{V}_1 VVV1 and V 2 \pmb{V}_2 VVV2 are two subspaces of a vector space V \pmb{V} VVV, such that each α ∈ V 1 + V 2 \alpha \in \pmb{V}_1+\pmb{V}_2 αVVV1+VVV2 can be uniquely decomposed as
    α = α 1 + α 2 ,    α 1 ∈ V 1 , α 2 ∈ V 2 \alpha = \alpha_1+\alpha_2, \space \space \alpha_1 \in \pmb{V}_1,\alpha_2 \in \pmb{V}_2 α=α1+α2,  α1VVV1,α2VVV2 then the sum V 1 + V 2 \pmb{V}_1+\pmb{V}_2 VVV1+VVV2 is called a direct sum(直和) of V 1 \pmb{V}_1 VVV1 and V 2 \pmb{V}_2 VVV2, denoted by V 1 + ˙ V 2 \pmb{V}_1 \dot{+} \pmb{V}_2 VVV1+˙VVV2
  • 多分解:Suppose that V 1 , V 2 , . . . , V s \pmb{V}_1,\pmb{V}_2,...,\pmb{V}_s VVV1,VVV2,...,VVVs are finite subspaces of V \pmb{V} VVV, if ∀ α ∈ V 1 + V 2 + . . . + V s \forall \alpha \in \pmb{V}_1+\pmb{V}_2+...+\pmb{V}_s αVVV1+VVV2+...+VVVs can be uniquely decomposed as
    α = α 1 + α 2 + . . . + α s ,    α i ∈ V i ( i = 1 , . . . . , s ) \alpha = \alpha_1+\alpha_2 +...+\alpha_s ,\space\space \alpha_i \in \pmb{V}_i(i=1,....,s) α=α1+α2+...+αs,  αiVVVi(i=1,....,s) then call V 1 + V 2 + . . . + V s \pmb{V}_1+\pmb{V}_2+...+\pmb{V}_s VVV1+VVV2+...+VVVs is a direct sum(直和), denoted by V 1 + ˙ V 2 + ˙ . . . + ˙ V s \pmb{V}_1 \dot{+} \pmb{V}_2\dot{+}...\dot{+} \pmb{V}_s VVV1+˙VVV2+˙...+˙VVVs

4.2 Sum of subspaces

  • V 1 + V 2 = { α + β ∣ α ∈ V 1 , β ∈ V 2 } \pmb{V}_1 + \pmb{V}_2 = \{\alpha+\beta|\alpha\in \pmb{V}_1, \beta\in \pmb{V}_2\} VVV1+VVV2={α+βαVVV1,βVVV2}

  • subspaces satisfying the following conditions:

    1. { V 1 ∩ V 2 = V 2 ∩ V 1 V 1 + V 2 = V 2 + V 1 \left\{\begin{aligned} &\pmb{V}_1\cap \pmb{V}_2 = \pmb{V}_2\cap \pmb{V}_1 \\ &\pmb{V}_1+\pmb{V}_2 = \pmb{V}_2+\pmb{V}_1\end{aligned}\right. {VVV1VVV2=VVV2VVV1VVV1+VVV2=VVV2+VVV1
    2. { ( V 1 ∩ V 2 ) ∩ V 3 = V 1 ∩ ( V 2 ∩ V 3 ) ( V 1 + V 2 ) + V 3 = V 1 + ( V 2 + V 3 ) \left\{\begin{aligned} &(\pmb{V}_1\cap \pmb{V}_2)\cap \pmb{V}_3 = \pmb{V}_1 \cap (\pmb{V}_2\cap \pmb{V}_3) \\ &(\pmb{V}_1+ \pmb{V}_2)+ \pmb{V}_3 = \pmb{V}_1 + (\pmb{V}_2+ \pmb{V}_3)\end{aligned}\right. {(VVV1VVV2)VVV3=VVV1(VVV2VVV3)(VVV1+VVV2)+VVV3=VVV1+(VVV2+VVV3)

    Generally, if V 1 , V 2 , . . . , V s \pmb{V}_1,\pmb{V}_2,...,\pmb{V}_s VVV1,VVV2,...,VVVs are subspaces of V \pmb{V} VVV, then

    1. V 1 ∩ V 2 ∩ . . . ∩ V s = ⋂ i = 1 s V i \pmb{V}_1\cap \pmb{V}_2\cap...\cap \pmb{V}_s = \bigcap_{i=1}^s\pmb{V}_i VVV1VVV2...VVVs=i=1sVVVi
    2. V 1 + V 2 + . . . + V s = ∑ i = 1 s V i \pmb{V}_1+\pmb{V}_2+...+\pmb{V}_s = \sum_{i=1}^s\pmb{V}_i VVV1+VVV2+...+VVVs=i=1sVVVi

    are subspaces of V \pmb{V} VVV

4.3 Theorems

4.3.1 Theorem 1

  • A nonempty subset W \pmb{W} WWW in V \pmb{V} VVV is a subspace of V \pmb{V} VVV ⇔ \Leftrightarrow W \pmb{W} WWW satisfies the closure properties of addition and scalar multiplication
    原线性空间的非空子集,只要满足加法和数乘封闭性,其他8条性质一定满足,即为线性子空间
    { ∀ α , β ∈ W , α + β ∈ W ∀ α ∈ W , k ∈ P , k α ∈ W \left\{\begin{aligned} &\forall \alpha,\beta \in \pmb{W}, \alpha +\beta \in \pmb{W} \\ &\forall \alpha \in \pmb{W}, k\in P, k\alpha \in \pmb{W} \end{aligned} \right. {α,βWWW,α+βWWWαWWW,kP,kαWWW 说明: k k k 可以是数0,这样 k α = 0 ∈ W k\alpha = \pmb{0}\in W kα=000W 保证加法零元存在; k k k 可以是 -1,对任意 α ∈ W \alpha \in W αW − 1 ⋅ α = − α ∈ W -1·\alpha =-\alpha \in W 1α=αW,加法逆元存在; k k k 可以是1,保证乘法幺元存在,可以保证8条性质
  • Remark:
    1. W ⊆ V \pmb{W}\subseteq \pmb{V} WWWVVV is a subspace ⇔ W \Leftrightarrow \pmb{W} WWW is closed with the two operations defined on V \pmb{V} VVV
    2. W ⊆ V \pmb{W}\subseteq \pmb{V} WWWVVV is a subspace ⇒ \Rightarrow dim( W \pmb{W} WWW) ≤ \leq dim( V \pmb{V} VVV)
      W \pmb{W} WWW 的基能被 V \pmb{V} VVV 的基线性表出,根据2.3.2 theorems 2,说明 V \pmb{V} VVV 的基中向量个数肯定更多

4.3.2 Theorem 2

  • suppose that α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs is a group of vectors in V \pmb{V} VVV. Denote
    W = s p a n ( α 1 , α 2 , . . . , α s ) = { k 1 α 1 + k 2 α 2 + . . . . + k s α s ∣ k i ∈ P , i = 1 , . . . , s } \pmb{W} = span(\alpha_1,\alpha_2,...,\alpha_s) = \{k_1\alpha_1+k_2\alpha_2+....+k_s\alpha_s|k_i\in P,i=1,...,s\} WWW=span(α1,α2,...,αs)={k1α1+k2α2+....+ksαskiP,i=1,...,s} Then W \pmb{W} WWW is a subspace of V \pmb{V} VVV. We call W \pmb{W} WWW the spanned subspace by α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs
    线性空间中一组向量生成(span)的空间一定是线性子空间

4.3.3 Theorem 3

  • consider the two vector groups in V \pmb{V} VVV, α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs and β 1 , β 2 , . . . , β t \beta_1,\beta_2,...,\beta_t β1,β2,...,βt, then s p a n ( ( α 1 , α 2 , . . . , α s ) = s p a n ( β 1 , β 2 , . . . , β t ) ⇔ span((\alpha_1,\alpha_2,...,\alpha_s) = span(\beta_1,\beta_2,...,\beta_t) \Leftrightarrow span((α1,α2,...,αs)=span(β1,β2,...,βt) two vector groups are equivalent.
    两个向量组等价(可以互相线性表出) <=> 这两个向量组生成的线性子空间相等
  • Remark
    1. d i m ( s p a n ( α 1 , α 2 , . . . , α s ) ) ≤ s \mathrm{dim}(span(\alpha_1,\alpha_2,...,\alpha_s))\leq s dim(span(α1,α2,...,αs))s and the equality holds if and only if α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs are linearly independent
      对于 s p a n ( α 1 , α 2 , . . . , α s ) span(\alpha_1,\alpha_2,...,\alpha_s) span(α1,α2,...,αs) 的任意一组基 ε 1 , ε 2 , . . . , ε r \varepsilon_1,\varepsilon_2,...,\varepsilon_r ε1,ε2,...,εr,一定有 ε i ∈ s p a n ( α 1 , α 2 , . . . , α s ) \varepsilon_i\in span(\alpha_1,\alpha_2,...,\alpha_s) εispan(α1,α2,...,αs) ,也就是说这组线性无关的基向量可以由 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs 线性表出,根据2.3.2 theorems 2,有 s ≥ r s\geq r sr。当 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs 线性无关时,其本身也成为 s p a n ( α 1 , α 2 , . . . , α s ) span(\alpha_1,\alpha_2,...,\alpha_s) span(α1,α2,...,αs) 的一组基,此时等号成立
  • Examples
    在这里插入图片描述
    1. A选项对:设 x , y ∈ V 1 ⋂ V 2 , k ∈ P x,y \in V_1 \bigcap V_2, k \in P x,yV1V2,kP,有
      x , y ∈ V 1 ⇒ x + y ∈ V 1 x , y ∈ V 2 ⇒ x + y ∈ V 2 ∴ x + y ∈ V 1 ∩ V 2 x , y ∈ V 1 , V 2 ⇒ k x , k y ∈ V 1 , V 2 ∴ k x , k y ∈ V 1 ∩ V 2 ∵ { 0 } ∈ V 1 , V 2 ∴ V 1 ∩ V 2 ≠ ∅ \begin{aligned} &x,y\in V_1 \Rightarrow x+y\in V_1 \\ &x,y\in V_2 \Rightarrow x+y\in V_2 \\ &\therefore x+y \in V_1\cap V_2 \\ &x,y \in V_1, V_2 \Rightarrow kx,ky \in V_1,V_2 \\ &\therefore kx,ky \in V_1\cap V_2 \\ &\because \{0\} \in V_1,V_2 \\ &\therefore V_1\cap V_2 \neq \empty \end{aligned} x,yV1x+yV1x,yV2x+yV2x+yV1V2x,yV1,V2kx,kyV1,V2kx,kyV1V2{0}V1,V2V1V2=
    2. B选项错:设 ( α 1 , α 2 ) = ( 0 , 1 ) ,   ( β 1 , β 2 ) = ( 1 , 0 ) (\alpha_1,\alpha_2) = (0,1), \space (\beta_1,\beta_2) = (1,0) (α1,α2)=(0,1), (β1,β2)=(1,0), 则 V 1 + V 2 = s p a n ( 1 , 1 ) V_1+V_2=span(1,1) V1+V2=span(1,1),这个既不在 V 1 V_1 V1 也不在 V 2 V_2 V2 因此加法不封闭,此为反例
    3. C选项错:设 ( α 1 , α 2 . . . α s ) = ( β 1 , β 2 , . . . , β r ) (\alpha_1,\alpha_2...\alpha_s) = (\beta_1,\beta_2,...,\beta_r) (α1,α2...αs)=(β1,β2,...,βr) V 1 ⋃ V 2 = V 1 = V 2 V_1 \bigcup V_2 = V_1 = V_2 V1V2=V1=V2 这时是 subspace,此为反例
    4. D选项对:设 x , y ∈ V 1 + V 2 x,y \in V_1+V_2 x,yV1+V2, 则
      x = α ′ + β ′    ( α ′ ∈ V 1 , β ′ ∈ V 2 ) y = α ′ ′ + β ′ ′    ( α ′ ′ ∈ V 1 , β ′ ′ ∈ V 2 ) x + y = ( α ′ + α ′ ′ ) + ( β ′ + β ′ ′ ) α ′ + α ′ ′ ∈ V 1 , β ′ + β ′ ′ ∈ V 2 ⇒ x + y ∈ V 1 + V 2 同 理 , k x = k α ′ + k β ′ ∈ V 1 + V 2 \begin{aligned} &x = \alpha'+\beta' \space\space(\alpha'\in V_1,\beta'\in V_2)\\ &y = \alpha''+\beta'' \space\space(\alpha''\in V_1,\beta''\in V_2)\\ &x + y = (\alpha'+\alpha'') +(\beta'+\beta'') \\ & \alpha'+\alpha'' \in V_1, \beta'+\beta''\in V_2 \Rightarrow x + y \in V_1+V_2 \\ &同理, kx = k\alpha'+k\beta' \in V_1+V_2 \end{aligned} x=α+β  (αV1,βV2)y=α+β  (αV1,βV2)x+y=(α+α)+(β+β)α+αV1,β+βV2x+yV1+V2,kx=kα+kβV1+V2
    5. E选项对:设 α ∈ V 1 = k 1 α 1 + . . . + k s α s \alpha \in V_1 = k_1\alpha_1+...+k_s\alpha_s αV1=k1α1+...+ksαs β ∈ V 2 = k 1 ′ β 1 + . . . + k r ′ β r \beta \in V_2 = k_1'\beta_1+...+k_r'\beta_r βV2=k1β1+...+krβr, 则
      ∵ α + β = ∑ i = 1 s k i α i + ∑ i = 1 r k i ′ α i ∈ s p a n ( α 1 , . . . , α s , β 1 , . . . , β r ) ∴ V 1 + V 2 ⊆ s p a n ( α 1 , . . . , α s , β 1 , . . . , β r ) 同 理 s p a n ( α 1 , . . . , α s , β 1 , . . . , β r ) 中 任 意 向 量 可 以 拆 解 为 s p a n ( α 1 , . . . , α s ) + s p a n ( β 1 , . . . , β r ) , 即 属 于 V 1 + V 2 ∴ s p a n ( α 1 , . . . , α s , β 1 , . . . , β r ) ⊆ V 1 + V 2 ∴ V 1 + V 2 = s p a n ( α 1 , . . . , α s , β 1 , . . . , β r ) \begin{aligned} &\because \alpha + \beta = \sum_{i=1}^s k_i\alpha_i + \sum_{i=1}^r k_i'\alpha_i \in span(\alpha_1,...,\alpha_s,\beta_1,...,\beta_r) \\ &\therefore V_1+V_2 \subseteq span(\alpha_1,...,\alpha_s,\beta_1,...,\beta_r) \\ & 同理 span(\alpha_1,...,\alpha_s,\beta_1,...,\beta_r) 中任意向量可以拆解为 span(\alpha_1,...,\alpha_s) + span(\beta_1,...,\beta_r),即属于 V_1 + V_2 \\ &\therefore span(\alpha_1,...,\alpha_s,\beta_1,...,\beta_r) \subseteq V_1+V_2\\ &\therefore V_1 + V_2 = span(\alpha_1,...,\alpha_s,\beta_1,...,\beta_r) \end{aligned} α+β=i=1skiαi+i=1rkiαispan(α1,...,αs,β1,...,βr)V1+V2span(α1,...,αs,β1,...,βr)span(α1,...,αs,β1,...,βr)span(α1,...,αs)+span(β1,...,βr)V1+V2span(α1,...,αs,β1,...,βr)V1+V2V1+V2=span(α1,...,αs,β1,...,βr)

4.3.4 Theorem 4 (Dimension Formula 维数公式)

  • V 1 , V 2 V_1,V_2 V1,V2 are two subspaces of finite dimensional vector space V \pmb{V} VVV,则
    d i m ( V 1 ) + d i m ( V 2 ) = d i m ( V 1 + V 2 ) + d i m ( V 1 ∩ V 2 ) dim(\pmb{V}_1) + dim(\pmb{V}_2) = dim(\pmb{V}_1+\pmb{V}_2) + dim(\pmb{V}_1\cap \pmb{V}_2) dim(VVV1)+dim(VVV2)=dim(VVV1+VVV2)+dim(VVV1VVV2) 维数公式 dim(V1)+dim(V2) = dim(V1+V2)+dim(V1∩V2)
  • 证明思路:设 dim( V 1 \pmb{V}_1 VVV1) = s,dim( V 2 \pmb{V}_2 VVV2) = r
    1. 对于 V 1 ∩ V 2 V_1\cap V_2 V1V2 的一组基 ε 1 , . . . ε k \varepsilon_1,...\varepsilon_k ε1,...εk,把 V 1 V_1 V1 中不能用它线性表出的向量 α \alpha α 加入这组基,直到这组基的基向量数目为 s s s 时, ε 1 , . . . ε k , α k + 1 , . . . , α s \varepsilon_1,...\varepsilon_k, \alpha_{k+1},...,\alpha_s ε1,...εk,αk+1,...,αs 一定是 V 1 V_1 V1 的一组基
    2. 同理可以扩展 ε 1 , . . . ε k , β k + 1 , . . . , β r \varepsilon_1,...\varepsilon_k, \beta_{k+1},...,\beta_r ε1,...εk,βk+1,...,βr V 2 V_2 V2 的一组基
    3. 合在一起 ε 1 , . . . ε k , β k + 1 , . . . , β r , α k + 1 , . . . , α s \varepsilon_1,...\varepsilon_k, \beta_{k+1},...,\beta_r, \alpha_{k+1},...,\alpha_s ε1,...εk,βk+1,...,βr,αk+1,...,αs 一共有 s + r − k s+r-k s+rk 个,可以用定义证明他们线性无关
    4. 易证, V 1 + V 2 V_1+V_2 V1+V2 可以用这一组向量线性表出,因此这是 V 1 + V 2 V_1+ V_2 V1+V2 的一组基,得证
  • V 1 ∩ V 2 = { 0 } \pmb{V}_1 \cap \pmb{V}_2 = \{\pmb{0}\} VVV1VVV2={000} 时, d i m ( V 1 ∩ V 2 ) = 0 dim(\pmb{V}_1\cap \pmb{V}_2) = 0 dim(VVV1VVV2)=0,此时有
    d i m ( V 1 ) + d i m ( V 2 ) = d i m ( V 1 + V 2 ) \mathrm{dim}(\pmb{V}_1) + \mathrm{dim}(\pmb{V}_2) = \mathrm{dim}(\pmb{V}_1+\pmb{V}_2) dim(VVV1)+dim(VVV2)=dim(VVV1+VVV2)
  • Examples
    1. 证明 subspace & 求维数 & 求一组基
      在这里插入图片描述
      这个题第一问的证明有点问题,证明 subspace 应该说明非空,比如这题应该补一句关于 0 ∈ W \pmb{0}\in W 000W 的证明

    2. 求基和维数
      在这里插入图片描述

      1. 注意 4.3.3 例子中E选项的论证,说明 V 1 + V 2 = s p a n ( α 1 , α 2 , α 3 , β 1 , β 2 ) V_1+V_2 = span(\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2) V1+V2=span(α1,α2,α3,β1,β2),这5个向量构成一组基,所以通过化阶梯求向量组的秩即得到 dim ( V 1 + V 2 ) \text{dim}(V_1+V_2) dim(V1+V2)
      2. V 1 ∩ V 2 V_1 \cap V_2 V1V2 这个空间中的向量可以同时被 V 1 V_1 V1 V 2 V_2 V2 对应的两组基线性表示,因此这里联立解一个齐次线性方程组。通解为
        k = a 1 [ − 1 − 1 1 0 0 ] + a 2 [ − 1 − 1 0 − 1 1 ] = [ − a 1 − a 2 − a 1 − a 2 a 1 − a 2 a 2 ] \pmb{k} = a_1\begin{bmatrix}-1 \\-1\\1\\0\\0\end{bmatrix} + a_2\begin{bmatrix}-1 \\-1\\0\\-1\\1\end{bmatrix} = \begin{bmatrix}-a_1-a_2 \\-a_1-a_2\\a_1\\-a_2\\a_2\end{bmatrix} kkk=a111100+a211011=a1a2a1a2a1a2a2 回代,就会发现 V 1 ∩ V 2 V_1 \cap V_2 V1V2 中的任意向量在 V 2 V_2 V2 的基下表示为 a 2 ( β 1 − β 2 ) a_2(\beta_1-\beta_2) a2(β1β2),所以 dim ( V 1 ∩ V 2 ) = 1 \text{dim}(V_1 \cap V_2)=1 dim(V1V2)=1 V 1 ∩ V 2 V_1 \cap V_2 V1V2 的基可以是 β 1 − β 2 \beta_1-\beta_2 β1β2

4.3.5 Theorem 5 (Equivalent to direct sum 直和等价于)

  • 以下表述等价
    在这里插入图片描述
    在这里插入图片描述

4.3.6 Theorem 6 (Direct sum decomposition 直和分解)

  • Suppose that U \pmb{U} UUU is a subspace of dimensional vector space V \pmb{V} VVV, there exists another subspace W \pmb{W} WWW of V \pmb{V} VVV such that
    一个向量空间可以拆成两个(多个)线性子空间的直和
    V = U + ˙ W \pmb{V} = \pmb{U} \dot{+} \pmb{W} VVV=UUU+˙WWW
  • 证明思路:设 d i m ( V ) = n dim(\pmb{V}) = n dim(VVV)=n
    1. ε 1 , . . . , ε s \varepsilon_1,...,\varepsilon_s ε1,...,εs U \pmb{U} UUU 的一组基,将其扩展为 V \pmb{V} VVV 的一组基 ε 1 , . . . , ε s , β s + 1 , . . . , β n \varepsilon_1,...,\varepsilon_s,\beta_{s+1},...,\beta_n ε1,...,εs,βs+1,...,βn,则 V = s p a n ( ε 1 , . . . , ε s , β s + 1 , . . . , β n ) \pmb{V} = span(\varepsilon_1,...,\varepsilon_s,\beta_{s+1},...,\beta_n) VVV=span(ε1,...,εs,βs+1,...,βn),设 W = s p a n ( β s + 1 , . . . , β n ) \pmb{W} = span(\beta_{s+1},...,\beta_n) WWW=span(βs+1,...,βn),此时有 V = U + W \pmb{V} = \pmb{U} + \pmb{W} VVV=UUU+WWW
    2. 再证明 U + W \pmb{U} + \pmb{W} UUU+WWW 是直和,证明等价的维数公式即可
      ∵ d i m ( U ) = s ,   d i m ( W ) = n − s ∴ d i m ( U + W ) = d i m ( U ) + d i m ( W ) ∴ U + W 是 直 和 \begin{aligned} &\because dim(\pmb{U}) = s, \space dim(\pmb{W}) = n-s \\ &\therefore dim(\pmb{U}+\pmb{W}) = dim(\pmb{U}) +dim(\pmb{W}) \\ &\therefore \pmb{U}+\pmb{W} 是直和 \end{aligned} dim(UUU)=s, dim(WWW)=nsdim(UUU+WWW)=dim(UUU)+dim(WWW)UUU+WWW
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值