官方文档:http://storm.apache.org/releases/1.2.2/storm-kafka-client.html
原理:
KafkaSpout封装了一个kafka的消费者,通过简单配置servers以及topic后即可自动从kafka消费数据,并通过自定义的输出字段发送数据到bolt进行处理
pom.xml
kafka和storm都使用了较新的版本
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>1.1.3</version>
<!--提交到集群运行时,需要取消注释,否则jar包冲突-->
<!--<scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka-client</artifactId>
<version>1.2.2</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.12</artifactId>
<version>2.1.0</version>
<exclusions>
<!-- <exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion>-->
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.14</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<appendAssemblyId>false</appendAssemblyId>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<!-- 此处指定main方法入口的class -->
<mainClass>com.kafkatest.TopologyTest</mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>assembly</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
Toplogy:
/**
* Created by wxg on 2018/11/14 14:37
*/
public class TopologyTest {
public static void main(String[] args) {
TopologyTest topologyTest = new TopologyTest();
if (!ArrayUtils.isEmpty(args)) {
try {
StormSubmitter.submitTopology("kafka-test", topologyTest.stormConfig(), topologyTest.builder().createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology("kafka-test", topologyTest.stormConfig(), topologyTest.builder().createTopology());
}
}
private Config stormConfig() {
Config config = new Config();
config.setDebug(true);
config.setNumAckers(1);
return config;
}
private TopologyBuilder builder() {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", kafkaSpout(), 1);
builder.setBolt("bolt1", new Bolt1Test(), 1).shuffleGrouping("spout");
return builder;
}
private KafkaSpout<String, String> kafkaSpout() {
final Fields outputFields = new Fields("topic", "partition", "offset", "timestamp", "key", "msg_from_kafka");
final String host = "ip_address:9092";
final String topic = "topic_test";
KafkaSpoutConfig<String, String> kafkaSpoutConfig;
kafkaSpoutConfig = KafkaSpoutConfig
.builder(host, topic)
.setRecordTranslator((r) -> new Values(r.topic(), r.partition(), r.offset(), r.timestamp(), r.key(), r.value()), outputFields)
.setFirstPollOffsetStrategy(KafkaSpoutConfig.FirstPollOffsetStrategy.EARLIEST)
.build();
return new KafkaSpout<>(kafkaSpoutConfig);
}
}
Bolt:
/**
* Created by wxg on 2018/11/14 14:46
*/
public class Bolt1Test extends BaseBasicBolt {
private Logger logger = LoggerFactory.getLogger(Bolt1Test.class);
public void execute(Tuple tuple, BasicOutputCollector basicOutputCollector) {
String msg = tuple.getStringByField("msg_from_kafka");
logger.info("bolt1处理数据: {}", msg);
basicOutputCollector.emit(new Values(msg));
}
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("msg"));
}
}
输出
可以看到每发送一个tuple,就会跟一个ack,用来保证数据的可靠性,防止丢失。