BZOJ4725: [POI2017]Reprezentacje ró?nicowe

Description

给定一个数列a:
当n<=2时,a[n]=n
当n>2,且n是奇数时,a[n]=2a[n-1]
当n>2,且n是偶数时,a[n]=a[n-1]+r[n-1]
其中r[n-1]=mex(|a[i]-a[j]|)(1<=i<=j<=n-1),mex{S}表示最小的不在S集合里面的非负整数。
数列a的前若干项依次为:1,2,4,8,16,21,42,51,102,112,224,235,470,486,972,990,1980。
可以证明,对于任意正整数x,只存在唯一一对整数(p,q)满足x=a[p]-a[q],定义为repr(x)。
比如repr(17)=(6,3),repr(18)=(16,15)。
现有n个询问,每次给定一个正整数x,请求出repr(x)。

Input

第一行包含一个正整数n(1<=n<=10^5)。
接下来n行,每行一个正整数x(1<=x<=10^9),表示一个询问。

Output

输出n行,每行两个正整数p,q,依次回答每个询问。

Sample Input

2
17
18

Sample Output

6 3
16 15

HINT

Source

FTC真是神啊 不问FTC就想不出来了啊
这题一直拿到没思路 后来才知道这题是绝世傻题
考虑1e9以后的a[]如果存在a[i](a[i]>1e9)-a[j]<1e9 则j一定为i-1 否则两个之差直接>1e9了
那么我们暴力跑出1e9以内的a[](显然log)然后直接用map统计答案就好了
#include<bits/stdc++.h>
 
using namespace std;
 
map <int ,pair<int ,int > > s;
 
typedef map<int ,pair<int ,int > >::iterator it;
 
int Q,n;
 
int a[100],b[10000],cnt;
 
int main()
{
    a[1]=1,a[2]=2;
    s[1]=make_pair(2,1);
    for(n=3;;n++)
    {
        if(n&1) a[n]=a[n-1]*2;
        else for(int j=1;;j++) if(!s.count(j)) { a[n]=a[n-1]+j; break; }
        for(int j=1;j<n;j++) s[a[n]-a[j]]=make_pair(n,j);
        if((!(n&1))&&a[n]>1e9) break;
    }
    for(it l=s.begin();l!=s.end();l++)
        b[++cnt]=l->first;
    scanf("%d",&Q);
    while(Q--)
    {
        int x;
        scanf("%d",&x);
        it l=s.find(x);
        if(l!=s.end())
            printf("%d %d\n",l->second.first,l->second.second);
        else
        {
            int y=lower_bound(b+1,b+cnt+1,x)-b-1;
            printf("%d %d\n",n+(x-y)*2,n+(x-y)*2-1);
        }
    }
}



评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值