UOJ#273. 【清华集训2016】你的生命已如风中残烛

链接:

link

题解:

首先考虑如果确定了非零数的相对顺序怎么做。

考虑从左到右给每个 wi 贪心地分配离他最近的 wi1 0 ,那么我们记f(i,j)表示当前考虑分配 wi ,已经用了前 j 个空隙(数与数之间的位置),我们有转移:

f(i,j)=f(i1,k)×gi,jmax(k,i),其中 gi,j=(wi2+jj)

g 的含义就是将wi1 0 分配到j+1个空位,同时我们保证是极长的,所以最后一个 0 不参与分配的方案数。

这样就可以用一个状压DP来求方案数了。

注意到最后答案是一堆g乘起来,我们枚举 n 的自然数拆分,做两次DP,记pi表示对于 i 这种自然数拆分,所有g的积之和(不考虑顺序);记 qi 表示这种拆分数中这样的顺序的方案数,那么 ans=pi×qi

代码:

#include <bits/stdc++.h>
#define xx first
#define yy second
#define mp make_pair
#define pb push_back
#define mset(x, y) memset(x, y, sizeof x)
#define mcpy(x, y) memcpy(x, y, sizeof x)
using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

inline int Read()
{
    int x = 0, f = 1, c = getchar();
    for (; !isdigit(c); c = getchar())
        if (c == '-')
            f = -1;
    for (;  isdigit(c); c = getchar())
        x = x * 10 + c - '0';
    return x * f;
}

const int MAXN = 200005;
const int mod = 998244353;

int n, m, nxt[45], sum[MAXN], fac[MAXN], inv[MAXN], way[MAXN], f[45][MAXN], trans[MAXN][45];
map <vector <int>, int> idx;
vector <int> cur, val[MAXN];

inline int C(int n, int m)
{
    return 1LL * fac[n] * inv[m] % mod * inv[n - m] % mod;
}

inline void Dfs(int s, int v, int r)
{
    if (!s)
        idx[cur] = ++ m, sum[m] = r, val[m] = cur;
    else
        for (int i = 1; i <= v && i <= s; i ++)
            cur.pb(i), Dfs(s - i, i, r), cur.pop_back();
}

int main()
{
#ifdef wxh010910
    freopen("data.in", "r", stdin);
#endif
    n = Read(), fac[0] = fac[1] = inv[0] = inv[1] = 1;
    for (int i = 2; i < MAXN; i ++)
        fac[i] = 1LL * fac[i - 1] * i % mod, inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod;
    for (int i = 2; i < MAXN; i ++)
        inv[i] = 1LL * inv[i - 1] * inv[i] % mod;
    for (int i = 0; i < n; i ++)
        Dfs(i, i, i);
    for (int i = 1; i <= m; i ++)
    {
        trans[i][0] = i;
        for (int j = 1; j <= n - 1 - sum[i]; j ++)
        {
            vector <int> tmp = val[i];
            tmp.pb(j);
            sort(tmp.begin(), tmp.end(), greater <int> ());
            trans[i][j] = idx[tmp];
        }
    }
    f[0][1] = 1;
    for (int i = 0; i < n; i ++)
        for (int j = 1; j <= m; j ++)
            if (f[i][j])
                for (int k = 0; k <= i - sum[j]; k ++)
                    f[i + 1][trans[j][k]] = (f[i + 1][trans[j][k]] + f[i][j]) % mod;
    for (int i = 1; i <= m; i ++)
        way[i] = f[n][i];
    mset(f, 0);
    f[0][1] = 1;
    int ans = 0, cnt = 0;
    for (int i = 0; i < n; i ++)
    {
        int x = Read() - 1;
        cnt += x;
        if (x)
            for (int j = 0; j < n; j ++)
                nxt[j] = C(x + j - 1, j);
        else
            for (int j = 0; j < n; j ++)
                nxt[j] = !j;
        for (int j = 1; j <= m; j ++)
            if (f[i][j])
                for (int k = 0; k <= n - 1 - sum[j]; k ++)
                    f[i + 1][trans[j][k]] = (1LL * f[i][j] * nxt[k] + f[i + 1][trans[j][k]]) % mod;
    }
    for (int i = 1; i <= m; i ++)
    {
        int cur = 1LL * way[i] * f[n][i] % mod;
        for (int l = 0, r = 0; l < val[i].size(); cur = 1LL * cur * fac[r - l] % mod, l = r)
            while (r < val[i].size() && val[i][r] == val[i][l])
                r ++;
        cur = 1LL * cur * fac[n - val[i].size()] % mod;
        ans = (ans + cur) % mod;
    }
    while (cnt)
        ans = 1LL * ans * cnt % mod, cnt --;
    return printf("%d\n", ans), 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值