单调递增最长子序列
时间限制:3000 ms | 内存限制:65535 KB
难度:4
描述
求一个字符串的最长递增子序列的长度
如:dabdbf最长递增子序列就是abdf,长度为4
输入
第一行一个整数0<n<20,表示有n个字符串要处理
随后的n行,每行有一个字符串,该字符串的长度不会超过10000
输出
输出字符串的最长递增子序列的长度
样例输入
3
aaa
ababc
abklmncdefg
样例输出
1
3
7
动态规划:
dp1:记dp[i]为以a[i]为结尾的最长单增子序列
dp[i]=max{ dp[j]+1 | 0<=j<i && a[j] < a[i]};
代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
using namespace std;
const int maxn=110;
int dp[maxn];
int main(){
string s;
while(cin>>s){
dp[0]=1;
int m=0;
for(int i=1;i<s.size();i++){
dp[i]=0;
for(int j=i-1;j>=0;j--){
if(s[j] < s[i] && dp[i] < dp[j]+1){
dp[i]=dp[j]+1;
//break;
}
}
if(dp[i] > m)
m=dp[i];
}
cout<<m<<endl;
}
return 0;
}
dp2:
dp[i]表示长度为i+1的上升子序列中末尾元素的最小值(不存在时即为INT_MAX)
dp[i]=min{dp[i],a[j] | i=0 or dp[i-1] < a[j]};
优化代码:
#include <iostream>
#include <vector>
#include <algorithm>
#include <string.h>
#include <string>
#include <queue>
#include <limits.h>
using namespace std;
int dp[100];
int a[100];
int n,k;
int main()
{
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
}
fill(dp,dp+n,INT_MAX);
for(int i=0;i<n;i++){
*lower_bound(dp,dp+n,a[i])=a[i];
}
cout<<lower_bound(dp,dp+n,INT_MAX)-dp<<endl;
return 0;
}