dp-最长单增最长子序列

单调递增最长子序列
时间限制:3000 ms  |  内存限制:65535 KB
难度:4
描述
求一个字符串的最长递增子序列的长度
如:dabdbf最长递增子序列就是abdf,长度为4
输入
第一行一个整数0<n<20,表示有n个字符串要处理
随后的n行,每行有一个字符串,该字符串的长度不会超过10000
输出
输出字符串的最长递增子序列的长度
样例输入
3
aaa
ababc
abklmncdefg
样例输出
1
3
7


动态规划:

dp1:记dp[i]为以a[i]为结尾的最长单增子序列

dp[i]=max{ dp[j]+1 | 0<=j<i && a[j] < a[i]};


代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
using namespace std;

const int maxn=110;
int dp[maxn];
int main(){
    string s;
	while(cin>>s){
        dp[0]=1;
        int m=0;
        for(int i=1;i<s.size();i++){
                dp[i]=0;
            for(int j=i-1;j>=0;j--){
                if(s[j] < s[i] && dp[i] < dp[j]+1){
                    dp[i]=dp[j]+1;
                    //break;
                }
            }
            if(dp[i] > m)
                m=dp[i];
        }
        cout<<m<<endl;
	}
	return 0;
}


dp2:

dp[i]表示长度为i+1的上升子序列中末尾元素的最小值(不存在时即为INT_MAX)

dp[i]=min{dp[i],a[j] | i=0 or dp[i-1] < a[j]};

优化代码:

#include <iostream>
#include <vector>
#include <algorithm>
#include <string.h>
#include <string>
#include <queue>
#include <limits.h>
using namespace std;
int dp[100];
int a[100];
int n,k;
int main()
{
    cin>>n;
    for(int i=0;i<n;i++){
        cin>>a[i];
    }
    fill(dp,dp+n,INT_MAX);
    for(int i=0;i<n;i++){
        *lower_bound(dp,dp+n,a[i])=a[i];
    }
    cout<<lower_bound(dp,dp+n,INT_MAX)-dp<<endl;
    return 0;
}
















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值