树的介绍
树型结构是一种非线性的数据结构,它具有一个称为根节点(root node)的特殊节点,以及一些称为子节点(child nodes)的节点。每个节点可以有零个或多个子节点,但只能有一个父节点(parent node),除了根节点没有父节点。在树型结构中,节点之间的连接关系表示了它们之间的层次关系。
树型结构常用于表示具有层次关系的数据,例如文件系统、组织结构、目录结构等。它提供了一种便捷的方式来组织和访问数据。
树型结构的应用非常广泛,例如在计算机科学中,树型结构被用于实现搜索算法(如二叉搜索树)、存储和检索数据(如B树、堆)、表达抽象语法树等。在现实生活中,树型结构也有很多应用,比如家谱、图书分类、产品组织关系等。
树的定义和基本术语
树:是n个结点的有限集,当0==n时称为空树,我们不讨论空树。
根结点:树的最顶层的结点,一棵树有且仅有一个。
子树:一棵树除根结点外,剩余的是若干个互不相交的有限集,每一个集合本身又是棵树,称称为根的子树。
结点的度:树的结点包含一个数据元素及若干个指向其子树的分支,结点拥有的子树称为结点的度。
叶子结点:结构的度为0,被称为叶子结点或终端结点。
分支结点:结构的度不为0,被称为分支结点或非终端结点,也被称为内部结点。
树的度:是指树内各结点度的最大值。
密度:指的是一棵树中,所有结点的总数。
孩子、双亲、兄弟、祖先、子孙:结点的子树称为该结点的孩子,而该结点是孩子结点的双亲,拥有共同双亲的结点互为兄弟,从双亲结点往上,直到根结点都称为孩子结点的祖先结点,以某结点为根的子树中的任一结点都被称为该结点的子孙。
层数、深度、高度:从根结点开始定义,根为第一层、根的孩子为第二层依次类推,树中结点的最大层数被称为树的深度或高度,双亲在同一层的结点互为堂兄弟。
有序树和无序树:将树中结点的各子树看成从左到右是有序次,即不能交换(顺序有意义,表达一些含义),则称该树为有序树,否则称为无序树。
森林:若干个棵互不相交的树的集合称为森林,对树中每个结点而言,其子树集合就是森林。
就逻辑结构而言,任何一棵树都是一个二元组 Tree = (root,F),其中root是数据元素,称做树的根结点,F是若干棵子树构成的森林。
二叉树的定义和性质
二叉树:
是一种特殊的树型结构,也就是每个结点最多有两棵子树(二叉树中不存在度大于2的结点),并且二叉树的子树有左右之分,顺序不能颠倒。
满二叉树:
若一棵树的层数为k,它总结点数是2^k-1,每一层的节点数2^(k-1)则这棵树就是满二叉树。
完全二叉树:
若一棵树的层数为k,它前k-1层的总结点数是2^(k-1)-1,第k层的结点按照从左往右的顺序排列,则这棵树就是完全二叉树。
二叉树的性质:
性质1:
在二叉树的第i层上,最多有2^(i-1)个结点。
性质2:
深度为k的二叉树,最多有2^k-1个节点。
性质3:
对于任何一棵二叉树,如果叶子结点的数量为n0,度为2结点的数量为n2,则n0=n2+1;
n=n0+n1+n2;
n-1 = n1+n2*2
n0+n1+n2 == n1+n2*2+1
n0==n2+1
性质4:
具有n个结点的完全二叉树的高度为(log2n)+1。
性质5:
有一个n个结点的完全二叉树,结点按照从上到下从左到右的顺序排序为1~n。
1、i > 1时,i/2就是它的双亲结点。
2、i*2是i的左子树,当i*2>n时,则i没有左子树。
3、2*i+1是i的右子树,2*i+1>n时,则i没有右子树。
树与二叉树的转换
树与二叉树之间的转换有两种常见的操作:将一棵树转换为二叉树(树的编码),以及将一个二叉树还原为原始树(解码)。
将树转换为二叉树的一种常见方法是使用所谓的"左孩子-右兄弟"表示方法,也称为"二叉树表示法"。该方法通过对树的每个节点进行转换来构建二叉树:
-
对于树的每个节点,将它的第一个子节点作为二叉树的左孩子。
-
将该节点的其他子节点依次链接为左孩子的右兄弟节点。
-
对于树的每个节点进行递归处理,直到将整个树转换为二叉树。
这种转换方法可以保留原始树的结构和层次关系,在二叉树中的左子树仍然表示该节点的子节点,右子树表示同一层级的其他兄弟节点。
将二叉树还原为原始树的操作称为解码。解码过程与转换过程相反:
-
对于二叉树的每个节点,将它的左孩子作为解码后的节点的第一个子节点。
-
将该节点的右孩子链接为解码后的节点的其他兄弟节点。
-
对于二叉树的每个节点进行递归处理,直到将整个二叉树解码为原始树。
需要注意的是,树与二叉树之间的转换并不是唯一的,还可以使用其他方法进行编码和解码。这两种方法只是最常见的转换方式之一,具体的转换方式可能会根据具体需求和使用场景有所不同。