【AIGC】OpenAI 宣布推出Whisper large-v3-turbo 语音转录模型 速度提高了8倍

OpenAI 宣布推出了一个名为 large-v3-turbo(简称 turbo)的新 Whisper 模型。这是 Whisper large-v3 的优化版本,将解码器层数从大型模型的 32 层减少到与 tiny 模型相同的 4 层。此优化版本的开发受到了 Distil-Whisper 的启发,后者表明使用较小的解码器可以显著提升转录速度,同时对准确性的影响较小。

速度比 large-v3 快 8 倍,但质量几乎没有下降!

Whisper large-v3-turbo 主要功能和特点:

  1. 更少的解码器层数
    • 与 Whisper large-v3 相比,large-v3-turbo 只使用了 4 个解码器层,而 large-v3 使用了 32 个解码器层。较少的解码器层数使得模型在保持相对高准确度的同时,显著提高了处理速度。
  2. 优化的速度表现
    • Turbo 模型的语音转录速度比 tiny 模型更快,是 Whisper 系列模型中速度与准确性兼顾的“最佳选择”。通过使用更小的解码器层数,该模型提升了实时转录的能力。
    • 通过减少解码层数和启用 torch.compile,推理速度可提升高达 4.5 倍,进一步提高了模型的效率,非常适合需要低延迟的应用场景。
  3. 多语言支持
    • 支持 99 种语言的语音转录,表现出色,并且与大型数据集兼容,包括 FLEURS 和 Common Voice 数据集,尤其在高质量录音上效果更佳。
  4. 跨语言的高效表现
    • Turbo 模型的跨语言转录表现与 large-v2 相当,但在一些语言(如泰语和粤语)上表现较弱。在一些录音质量较高的数据集(如 FLEURS)上,turbo 模型的表现优于 Common Voice 数据集。
  5. 更快的自动语音识别 (ASR)
    • 结合最新的技术补丁(#2359),turbo 模型在使用 F.scaled_dot_product_attention(缩放点积注意力机制)时,能进一步提升自动语音识别的速度。
  6. 专注于转录任务
    • Turbo 模型专为多语言转录任务微调,不适合翻译任务,因为训练时不包含翻译数据。它在纯语音转录方面的表现更为优异,但翻译任务表现较差。
  7. 使用与集成方便
    • 开发者可以通过简单的 Python 包更新或 Whisper 的命令行工具默认使用 turbo 模型,使得其在实际应用中更易于集成。
### Whisper 语音识别的特点、功能和技术细节 #### 特点 Whisper 是由 OpenAI 开发的一个高效的自动语音识别 (ASR) 系统,其特点在于能够处理多样化的音频输入并提供高质量的转录结果。该系统经过大规模多语言数据集训练,具备出色的鲁棒性和灵活性[^2]。 - **多语言支持**:Whisper 支持超过 96 种语言的语音转文字功能,并且可以通过单一模型完成跨语言翻译任务,例如将其他语言直接转换为英文文本。 - **适应性强**:由于采用了大量带有不同口音、背景噪声和技术术语的数据进行训练,Whisper 对复杂环境下的语音具有较高的容忍度和准确性。 - **开放性与可扩展性**:作为开源项目的一部分,开发者可以根据实际需求调整或优化预训练好的模型结构以满足特定场景的要求[^1]。 #### 功能 除了基本的语音到文本转换外,Whisper 还提供了额外的功能选项: - **实时流式处理**:部分变种如 `whisper-large-v3-turbo` 能够快速响应短片段内的连续发音序列,在线生成初步推测结果以便于即时反馈给用户端应用场合下显得尤为重要[^3]。 - **多模态集成潜力**:虽然当前主要专注于音频信号分析方面的工作,但未来或许可以探索与其他感知形式相结合的可能性,比如视频中的唇读辅助增强效果等未开发领域。 以下是 Python 中调用 whisper 的简单示例代码: ```python import whisper model = whisper.load_model("base") # 加载基础版模型 audio_path = "./example.wav" result = model.transcribe(audio_path) print(result["text"]) ``` #### 技术细节 从架构设计角度来看,Whisper 基于 Transformer 编解码器框架构建而成,利用自注意力机制捕捉长时间依赖关系从而提升表达能力;同时引入了多层次特征提取模块来更好地表征声学特性。 另外值得注意的一点是在评估中文语音识别性能时应考虑到 CER 和 WER 度量标准之间存在的差异——前者针对单个字符层面错误率统计更加敏感适用于像汉字这样缺乏天然空格分隔符的情况;后者则需预先定义好词语边界划分规则才能正确计算得分[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值