阿里云的Qwen2.5-Coder 和 Qwen2.5-Math专有模型怎么样?

阿里云发布Qwen2.5 系列模型,最新发布的 Qwen2.5 系列中包括普通的大语言模型 (LLM) 以及针对编程和数学的专用模型:Qwen2.5-Coder 和 Qwen2.5-Math

包括:

  • Qwen2.5: 0.5B、1.5B、3B、7B、14B、32B 和 72B
  • Qwen2.5-Coder: 1.5B、7B 和 32B(即将发布)
  • Qwen2.5-Math: 1.5B、7B 和 72B

新的模型在指令跟随、生成长文本(超过 8K Tokens)、理解结构化数据(如表格)以及生成结构化输出(尤其是 JSON 格式)方面取得了显著进步。

Qwen2.5 模型更能适应不同的系统提示,提升了角色扮演和条件设定的能力。

与 Qwen2 类似,Qwen2.5 支持 128K Tokens,最大可生成 8K Tokens,且支持 29 种语言,包括中文、英语、法语、西班牙语、葡萄牙语、德语、意大利语、俄语、日语、韩语、越南语、泰语、阿拉伯语等。

主要亮点包括:

相比 Qwen2 系列,Qwen2.5 系列具有以下升级:

  1. 全面开源: 除继续开源 Qwen2 的四个模型(0.5B、1.5B、7B 和 72B)外,Qwen2.5 还新增了两个中等规模的高性价比模型 Qwen2.5-14B 和 Qwen2.5-32B,以及一个移动端模型 Qwen2.5-3B。这些模型与同类开源模型相比竞争力极强。
  2. 更大规模、更高质量的预训练数据集: 预训练数据集的规模从 7 万亿 tokens 扩展到 18 万亿 tokens。
  3. 知识增强: Qwen2.5 大幅提升了知识储备。在 MMLU 基准测试中,Qwen2.5-7B 和 72B 的表现分别从 70.3 提升到 74.2 和从 84.2 提升到 86.1
  4. 编程能力增强: 通过 Qwen2.5-Coder 的技术突破,Qwen2.5 在编程能力方面得到了显著提升。Qwen2.5-72B-Instruct 在 LiveCodeBench、MultiPL-E 和 MBPP 基准测试中分别取得了 55.575.1 和 88.2 的分数。
  5. 数学能力增强: 整合 Qwen2-Math 技术后,Qwen2.5 的数学能力得到了快速提升。Qwen2.5-7B/72B-Instruct 在 MATH 基准测试中的成绩从 52.9/69.0 提升至 75.5/83.1
  6. 更符合人类偏好: Qwen2.5 能够生成更符合人类偏好的响应。特别是 Qwen2.5-72B-Instruct 的 Arena-Hard 分数从 
### Qwen2.5-Coder Qwen2.5 的特性差异 #### 特性对比概述 Qwen2.5-Coder 是专门为编码任务优化的大规模预训练模型,而 Qwen2.5 则是一个更广泛用途的语言模型。两者的主要区别在于应用场景技术实现上的不同。 #### 应用场景 - **Qwen2.5-Coder** 主要针对编程软件开发领域设计,在代码补全、错误检测以及自动化测试等方面表现出色[^2]。 - **Qwen2.5** 更侧重于自然语言处理的一般应用,如对话生成、文本摘要等通用NLP任务。 #### 技术细节 - **查询类型** - 对于 **Qwen2.5-Coder**, 解码器的查询可以分为潜在查询文本查询两类。前者适用于解决复杂的逻辑推理问题,后者则专注于理解并生成人类可读的程序文档说明[^1]。 - 而对于 **Qwen2.5**, 查询机制更加灵活多样,不仅限于上述两种形式,还包括但不限于图像描述中的视觉特征提取等多模态输入方式。 - **输出模式** - 在 **Qwen2.5-Coder** 中, 输出主要集中在提供精确的语法结构指导支持高效的编译过程所需的语义嵌入上。 - 相较之下,**Qwen2.5** 可以产生更为丰富的输出种类,比如像素级别的掩膜预测用于目标分割或是其他计算机视觉相关的子任务。 ```python # 示例:使用Qwen2.5-Coder进行代码补全 def example_function(x): return x * # 使用Qwen2.5进行文本摘要 text = "这是一个很长的文章..." summary = model.summarize(text) print(summary) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值