A. Primes or Palindromes?

26 篇文章 0 订阅
6 篇文章 0 订阅

题目链接:http://codeforces.com/problemset/problem/568/A

Rikhail Mubinchik believes that the current definition of prime numbers is obsolete as they are too complex and unpredictable. A palindromic number is another matter. It is aesthetically pleasing, and it has a number of remarkable properties. Help Rikhail to convince the scientific community in this!

Let us remind you that a number is called prime if it is integer larger than one, and is not divisible by any positive integer other than itself and one.

Rikhail calls a number a palindromic if it is integer, positive, and its decimal representation without leading zeros is a palindrome, i.e. reads the same from left to right and right to left.

One problem with prime numbers is that there are too many of them. Let's introduce the following notation: π(n) — the number of primes no larger than nrub(n) — the number of palindromic numbers no larger than n. Rikhail wants to prove that there are a lot more primes than palindromic ones.

He asked you to solve the following problem: for a given value of the coefficient A find the maximum n, such that π(n) ≤ A·rub(n).

Input

The input consists of two positive integers pq, the numerator and denominator of the fraction that is the value of A ().

Output

If such maximum number exists, then print it. Otherwise, print "Palindromic tree is better than splay tree" (without the quotes).

Examples

input

Copy

1 1

output

Copy

40

input

Copy

1 42

output

Copy

1

input

Copy

6 4

output

Copy

172

题意:问最大n是多少时素数个数比上回文个数小于等于p/q;

思路:开始我没想到用42可以确定n的最大范围,打表可以发现素数的增加远大于回文数。我用的范围是1e7。这种题多测试几次就会逼近正确值。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define LL long long

using namespace std;
const int maxn=1e7;
int prime[maxn];
int vis[maxn];
void init()
{
    vis[1]=1;
    for(int i=2;i<maxn;i++)
    {
        if(!vis[i])
        {
            prime[++prime[0]]=i;
        }
        for(int j=1;j<=prime[0];j++)
        {
            if(prime[j]*i>=maxn)
            {
                break;
            }
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                break;
            }
        }
    }
    return ;
}
int check2(int y)
{
    int st[20];
    int cnt=0;
    while(y)
    {
        st[cnt++]=y%10;
        y/=10;
    }
    int flag=1;
    //cout<<cnt<<endl;
    for(int i=0;i<cnt/2;i++)
    {
        //cout<<st[i]<<" "<<st[cnt-i-1]<<endl;
        if(st[i]!=st[cnt-i-1])
        {
            return 0;
        }
    }

    return 1;
}
int main()
{
    init();
    double p,q;
    int cnt1=0,cnt2=0;
    cin>>p>>q;
    int ans=1;
    for(int i=1;i<maxn;i++)
    {
         cnt1+=(!vis[i]);
         cnt2+=check2(i);
         //cout<<i<<" "<<cnt1<<" "<<cnt2<<" "<<cnt1/cnt2<<endl;
        if(1.0*cnt1<=1.0*cnt2*p/q)
        {
            //cout<<i<<" "<<cnt1<<" "<<cnt2<<endl;
            ans=i;
        }

    }
    cout<<ans<<endl;
    return 0;
}

反思:遇到不确定的范围先打表看看。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值