使离H最近的正负样本刚好分别落在H1和H2上,这样的样本就是支持向量。那么其他所有的训练样本都将位于H1和H2之外,也就是满足如下约束:
写成统一的式子就是:
而超平面H1和H2的距离可知为:
SVM的任务就是寻找这样一个超平面H把样本无误地分割成两部分,并且使H1和H2的距离最大。要找到这样的超平面,只需最大化间隔Margin,也就是最小化。于是可以构造如下的条件极值问题:
其中:
那么我们要处理的规划问题就变为:
上式即为对偶变换,这样就把这个凸规划问题转换成了对偶问题:
其意义是:原凸规划问题可以转化为先对w和b求偏导,令其等于0消掉w和b,然后再对α求L的最大值。下面我们就来求解(6)式,为此我们先计算w和b的偏导数。由(3)式有:
为了让L在w和b上取到最小值,令(7)式的两个偏导数分别为0,于是得到:
将(8)代回(3)式,可得:
再把(9)代入(6)式有:
考虑到(8)式,我们的对偶问题就变为:
这个约束是这样得来的,如果(2)和(5)等效,必有:
把(3)式代入上式中,得到:
化简得到:
又因为约束(1)式和(4)式,有:
所以要使(13)式成立,只有令:,由此得到(12)式的约束。该约束的意义是:如果一个样本是支持向量,则其对应的拉格朗日系数非零;如果一个样本不是支持向量,则其对应的拉格朗日系数一定为0。由此可知大多数拉格朗日系数都是0。
计算得到最优分割面H的法向量w。而分割阈值b也可以通过(12)式的约束用支持向量计算出来。这样我们就找到了最优的H1和H2,这就是我们训练出来的SVM。
原文:http://blog.sina.com.cn/s/blog_4298002e010144k8.html
本来要自己写个的,但是发现,这个跟我的想法差不多,简单明了的感觉是最舒服的,可以和我另一个转的SVM结合起来看,不懂的可以留言。