目录
1.集合介绍以及使用
在Python中,集合(Set)是一种无序的容器类型,只能包含唯一的元素。集合可以通过花括号 {} 或者 set() 函数来创建。
说明
集合、list、tuple、dict一样都可以存放多个值,但是集合主要用于:去重、关系运算
定义:在{}内用逗号分隔开多个元素,集合具备以下三个特点:
1:每个元素必须是不可变类型
2:集合内没有重复的元素
3:集合内元素无序
在{}内用逗号分隔开多个元素,集合具备以下三个特点: 1:每个元素必须是不可变类型 2:集合内没有重复的元素 3:集合内元素无序
s = {1,2,3,4} # 本质 s = set({1,2,3,4})
注意1:列表类型是索引对应值,字典是key对应值,均可以取得单个指定的值,而集合类型既没有索引也没有key与值对应,所以无法取得单个的值,而且对于集合来说,主要用于去重与关系元素,根本没有取出单个指定值这种需求。 注意2:{}既可以用于定义dict,也可以用于定义集合,但是字典内的元素必须是key:value的格式,现在我们想定义一个空字典和空集合,该如何准确去定义两者?
d = {} # 默认是空字典
s = set() # 这才是定义空集合
# 但凡能被for循环的遍历的数据类型(强调:遍历出的每一个值都必须为不可变类型)都可以传给set()转换成集合类型
s = set([1,2,3,4])
s1 = set((1,2,3,4))
s2 = set({'name':'jason',})
s3 = set('egon')
print(s,s1,s2,s3)# {1, 2, 3, 4} {1, 2, 3, 4} {'name'} {'e', 'o', 'g', 'n'}
1.1.创建set集合
1.使用花括号创建set集合
a = {1, 2, 3, 4}
2.使用set()函数创建set集合
b = set([1, 2, 3, 4])
1.2集合运算
两个集合的关系如下图所示
定义两个集合friends与friends2来分别存放两个人的好友名字
friends1 = {"zero","kevin","ly","qq"} friends1 的好友们
friends2 = {"Jy","ricky","ly","qq"} friends2 的好友们
1.交集(&)运算符
s1 = {1, 2, 3}
s2 = {2, 3, 4}
s3 = s1 & s2
print(s3) # 输出结果:{2, 3}
2.并集(|)运算符
s1 = {1, 2, 3}
s2 = {2, 3, 4}
s3 = s1 | s2
print(s3) # 输出结果:{1, 2, 3, 4}
3.差集(-)运算符
s1 = {1, 2, 3}
s2 = {2, 3, 4}
s3 = s1 - s2
print(s3) # 输出结果:{1}
4.对称差集(^)运算符
s1 = {1, 2, 3}
s2 = {2, 3, 4}
s3 = s1 ^ s2
print(s3) # 输出结果:{1, 4}
5.子集(<)和超集(>)运算符
s1 = {1, 2}
s2 = {1, 2, 3}
result = s1 < s2
print(result) # 输出结果:True
s1 = {1, 2, 3}
s2 = {1, 2}
result = s1 > s2
print(result) # 输出结果:True
1.合集/并集(|):求两个用户所有的好友(重复好友只留一个)
friends1 | friends2
{'kevin', 'ricky', 'zero', 'ly', 'Jy', 'qq'}
2.交集(&):求两个用户的共同好友
friends1 & friends2
{'ly', 'qq'}
3.差集(-):
>>> friends1 - friends2 # 求用户1独有的好友
{'kevin', 'zero'}
>>> friends2 - friends1 # 求用户2独有的好友
{'ricky', 'Jy'}
4.对称差集(^) # 求两个用户独有的好友们(即去掉共有的好友)
>>> friends1 ^ friends2
{'kevin', 'zero', 'ricky', 'Jy'}
5.值是否相等(==)
>>> friends1 == friends2
False
6.父集:一个集合是否包含另外一个集合
6.1 包含则返回True
>>> {1,2,3} > {1,2}
True
>>> {1,2,3} >= {1,2}
True
6.2 不存在包含关系,则返回False
>>> {1,2,3} > {1,3,4,5}
False
>>> {1,2,3} >= {1,3,4,5}
False
7.子集
>>> {1,2} < {1,2,3}
True
>>> {1,2} <= {1,2,3}
True
1.3集合的内置方法
1.add()方法
s = set([1, 2, 3])
s.add(4)
print(s) # 输出结果:{1, 2, 3, 4}
2.clear()方法
s = set([1, 2, 3])
s.clear()
print(s) # 输出结果:set()
3.copy()方法
s1 = set([1, 2, 3])
s2 = s1.copy()
print(s2) # 输出结果:{1, 2, 3}
4.difference()方法
s1 = set([1, 2, 3])
s2 = set([2, 3, 4])
s3 = s1.difference(s2)
print(s3) # 输出结果:{1}
5.discard()方法
s = set([1, 2, 3])
s.discard(2)
print(s) # 输出结果:{1, 3}
6.intersection()方法
s1 = set([1, 2, 3])
s2 = set([2, 3, 4])
s3 = s1.intersection(s2)
print(s3) # 输出结果:{2, 3}
7.isdisjoint()方法
s1 = set([1, 2, 3])
s2 = set([4, 5, 6])
print(s1.isdisjoint(s2)) # 输出结果:True
s3 = set([2, 3, 4])
print(s1.isdisjoint(s3)) # 输出结果:False
8.issubset()方法
s1 = set([1, 2, 3])
s2 = set([1, 2, 3, 4])
print(s1.issubset(s2)) # 输出结果:True
s3 = set([2, 3, 4])
print(s1.issubset(s3)) # 输出结果:False
9.issuperset()方法
s1 = set([1, 2, 3])
s2 = set([1, 2])
print(s1.issuperset(s2)) # 输出结果:True
s3 = set([2, 3, 4])
print(s1.issuperset(s3)) # 输出结果:False
10.pop()方法
s = set([1, 2, 3])
x = s.pop()
print(x) # 输出结果:1
print(s) # 输出结果:{2, 3}
11.remove()方法
s = set([1, 2, 3])
s.remove(2)
print(s) # 输出结果:{1, 3}
12.symmetric_difference()方法
s1 = set([1, 2, 3])
s2 = set([2, 3, 4])
s3 = s1.symmetric_difference(s2)
print(s3) # 输出结果:{1, 4}
13.union()方法
s1 = set([1, 2, 3])
s2 = set([2, 3, 4])
s3 = s1.union(s2)
print(s3) # 输出结果:{1, 2, 3, 4}
14.update()方法
s1 = set([1, 2, 3])
s2 = set([2, 3, 4])
s1.update(s2)
print(s1) # 输出结果:{1, 2, 3, 4}
1.4去重
集合去重复有局限性
1. 只能针对不可变类型
2. 集合本身是无序的,去重之后无法保留原来的顺序
l=['a','b',1,'a','a']
s=set(l)
print(s) # 将列表转成了集合 {'b', 'a', 1}
l_new=list(s) # 再将集合转回列表
print(l_new)#['b', 'a', 1] # 去除了重复,但是打乱了顺序
# 针对不可变类型,并且保证顺序则需要我们自己写代码实现,例如
l=[
{'name':'lili','age':18,'sex':'male'},
{'name':'jack','age':73,'sex':'male'},
{'name':'tom','age':20,'sex':'female'},
{'name':'lili','age':18,'sex':'male'},
{'name':'lili','age':18,'sex':'male'},
]
new_l=[]
for dic in l:
if dic not in new_l:
new_l.append(dic)
print(new_l)
# 结果:既去除了重复,又保证了顺序,而且是针对不可变类型的去重
[
{'age': 18, 'sex': 'male', 'name': 'lili'},
{'age': 73, 'sex': 'male', 'name': 'jack'},
{'age': 20, 'sex': 'female', 'name': 'tom'}
]
练习题
"""
一.关系运算
有如下两个集合,pythons是报名python课程的学员名字集合,linuxs是报名linux课程的学员名字集合
pythons={'ly','qq','kevin','ricky','gangdan','biubiu'}
linuxs={'kermit','tony','gangdan'}
1. 求出即报名python又报名linux课程的学员名字集合
2. 求出所有报名的学生名字集合
3. 求出只报名python课程的学员名字
4. 求出没有同时这两门课程的学员名字集合
"""
# 求出即报名python又报名linux课程的学员名字集合
pythons & linuxs
# 求出所有报名的学生名字集合
pythons | linuxs
# 求出只报名python课程的学员名字
pythons - linuxs
# 求出没有同时这两门课程的学员名字集合
pythons ^ linuxs