A non-local algorithm for image denoising理解及读书笔记

本文介绍了一种有效的图像去噪方法——非局部均值(NLM)。NLM通过计算图像子块间的高斯加权欧氏距离来确定权值,进而对当前像素点进行加权平均修正。文中详细解释了NLM算法的工作原理,包括相似窗和搜索窗的选择,以及如何通过领域相似度提高像素间匹配的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、非局部均值的的突破在于它是将有噪声的图像改正而不是将噪声单独从图像中分离出来,它的基本思想是:

当前像素点的灰度值与所有与其结构相似的像素点加权平均得到,确定权值系数则是:对于每一个像素点的权值,采用以该像素点为中心的图像子块与当前像素点为中心的图像子块之间的高斯加权欧氏距离来计算

2、下图表示了高斯滤波,双边滤波和非局部均值处理过程

3、NML 算法首先要确定两个窗口,分别为相似窗和搜索窗,相似窗被选用与比较两个像素的相似性,而搜索窗则确定寻找相似结构的区域和范围

4、NML的滤波过程由下图表示:

w代表权重。因为噪声的存在,单独的像素不可靠,所以使用领域,只有领域的相似度高才说明两个像素的相似度高

下图表示利用欧式距离计算权重:

-------------------------------------------------------------持续更新------------------------------------------------------------------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值