python——【视频转成多个图片】、【多个图片组合成视频】、【图片换脸】、【人脸检测】、【人脸识别】

1、视频转成多个图片

知识点:

  • 开启线程
  • 使用cv2把视频转成一帧帧的图片
import cv2
import os
import threading

video_path = "D:/video11/";#存放视频的文件夹
pic_path = "D:/pic22/";#生成图片后保存到的文件夹
filelist = os.listdir(video_path)  # 返回指定的文件夹下包含的文件或文件夹名字的列表,这个列表按字母顺序排序。


def video2pic(filename):
    # print(filename)
    cnt = 0
    dnt = 0
    if os.path.exists(pic_path + str(filename)):
        pass
    else:
        os.mkdir(pic_path + str(filename))
    cap = cv2.VideoCapture(video_path + str(filename))  # 读入视频
    while True:
        ret, image = cap.read()
        if image is None:
            break
        # show a frame

        w = image.shape[1]
        h = image.shape[0]
        if (cnt % 20) == 0:
            cv2.imencode('.jpg', image)[1].tofile(pic_path + str(filename) + '/' + str(dnt) + '.jpg')
            # cv2.imwrite('C:/Users/JiangHuiQi/Desktop/pic/' + str(filename) + '/' + str(dnt) + '.jpg', image) #含中文路径,不可行
            print(pic_path + str(filename) + '/' + str(dnt) + '.jpg')
            dnt = dnt + 1
        cnt = cnt + 1
        if cv2.waitKey(1) & 0xFF == ord('q'):
            print("=全部转换完成=")
            break
    cap.release()


if __name__ == '__main__':
    for filename in filelist:
        threading.Thread(target=video2pic, args=(filename,)).start()

2、多个图片组合成视频

import os
import cv2
# 需要修改:1、图片路径。2、视频大小size。3、图片是png还是jpg。4、视频帧
path = 'D:/pic22/22/'#需要调用的图片路径 例如:C:/picture/
filelist = os.listdir(path)

fps = 10 #视频每秒24帧,越小就越慢
size = (640, 360) #需要转为视频的图片的尺寸640, 480,要根据图片的大小来转
#可以使用cv2.resize()进行修改
# video = cv2.VideoWriter("VideoTest1.avi", cv2.VideoWriter_fourcc('I', '4', '2', '0'), fps, size)# 这里的格式有mp4v和avi
video = cv2.VideoWriter("VideoTest1.mp4v", cv2.VideoWriter_fourcc('I', '4', '2', '0'), fps, size)# 这里的格式有mp4v和avi,I420可以换成其他
#视频保存在当前目录下

for item in filelist:
    if item.endswith('.jpg'):
    #找到路径中所有后缀名为.png的文件,可以更换为.jpg或其它
        item = path + item
        img = cv2.imread(item)
        video.write(img)

video.release()
cv2.destroyAllWindows()

3、在图片中换脸

简介:本功能实现,主要是使用旷世的换脸接口,需要自己去注册一个账号,然后把api_key和api_secret拷贝进里面的代码。亲测可用

import requests
import json
import simplejson
import base64


# ********使用旷世的换脸接口**********
# 第一步:获取人脸关键点
# 参数imgpath: 图片的地址 ,返回return: 一个字典类型的人脸关键点 如:{'top': 156, 'left': 108, 'width': 184, 'height': 184}
def find_face(imgpath):
    http_url = 'https://api-cn.faceplusplus.com/facepp/v3/detect'  # 获取人脸信息的接口
    data = {
        # "api_key":"x2NyKaa6vYuArYwat4x0-NpIbM9CrwGU",#访问url所需要的参数
        # "api_secret":"OuHx-Xaey1QrORwdG7QetGG5JhOIC8g7",#访问url所需要的参数

        "api_key": "2JbQvk6ZxxbGC6Kas6_CQujs3bY7JwJT",  # 访问url所需要的参数
        "api_secret": "gzfYk-LKqCpMZrnAnY6Vvkg7L-HlFc0f",  # 访问url所需要的参数

        "image_url": imgpath,  # 图片地址
        "return_landmark": 1
    }

    files = {'image_file': open(imgpath, 'rb')}  # 定义一个字典存放图片的地址
    response = requests.post(http_url, data=data, files=files)
    res_con1 = response.content.decode('utf-8')
    res_json = simplejson.loads(res_con1)
    faces = res_json['faces']
    list = faces[0]
    rectangle = list['face_rectangle']
    return rectangle


# 第二步:实现换脸
#:参数 image_url1: 被换脸的图片路径
#:参数 image_url2: 换脸的图片路径
#:参数 image_url: 换脸后生成图片所保存的路径
#:参数 number: 换脸的相似度
def merge_face(image_url1, image_url2, image_url, number):
    # 首先获取两张图片的人脸关键点
    face1 = find_face(image_url1)
    face2 = find_face(image_url2)
    # 将人脸转换为字符串的格式
    rectangle1 = str(
        str(face1['top']) + "," + str(face1['left']) + "," + str(face1['width']) + "," + str(face1['height']))
    rectangle2 = str(
        str(face2['top']) + "," + str(face2['left']) + "," + str(face2['width']) + "," + str(face2['height']))
    # 读取两张图片
    f1 = open(image_url1, 'rb')
    f1_64 = base64.b64encode(f1.read())
    f1.close()
    f2 = open(image_url2, 'rb')
    f2_64 = base64.b64encode(f2.read())
    f2.close()

    url_add = 'https://api-cn.faceplusplus.com/imagepp/v1/mergeface'  # 实现换脸的接口
    data = {
        # "api_key": "x2NyKaa6vYuArYwat4x0-NpIbM9CrwGU",
        # "api_secret": "OuHx-Xaey1QrORwdG7QetGG5JhOIC8g7",
        "api_key": "2JbQvk6ZxxbGC6Kas6_CQujs3bY7JwJT",  # 访问url所需要的参数
        "api_secret": "gzfYk-LKqCpMZrnAnY6Vvkg7L-HlFc0f",  # 访问url所需要的参数
        "template_base64": f1_64,
        "template_rectangle": rectangle1,
        "merge_base64": f2_64,
        "merge_rectangle": rectangle2,
        "merge_rate": number
    }
    response1 = requests.post(url_add, data=data)
    res_con1 = response1.content.decode('utf-8')
    res_dict = json.JSONDecoder().decode(res_con1)
    result = res_dict['result']
    imgdata = base64.b64decode(result)
    file = open(image_url, 'wb')
    file.write(imgdata)
    file.close()


if __name__ == '__main__':
    image1 = r"meizi1.png"  # 被换脸的图片路径
    image2 = r"meizi.png"  # 换脸的图片路径
    image3 = r"face1.png"  # 换脸后生成图片所保存的路径
    merge_face(image1, image2, image3, 100)

4、人脸检测

import cv2

# 指定图片的人脸识别然后存储
img = cv2.imread("face2.jpg")#需要检测的图片
color = (0, 255, 0)
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
classfier = cv2.CascadeClassifier("D:/Python37-32/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml")
# 在硬盘里寻找文件haarcascade_frontalface_default,然后把找到的路径写到上一行代码
faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects) > 0:  # 大于0则检测到人脸
    for faceRect in faceRects:  # 单独框出每一张人脸
        x, y, w, h = faceRect
        cv2.rectangle(img, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 3)  # 5控制绿色框的粗细

# 写入图像
cv2.imwrite('output.jpg', img)#存储检测出人脸图片
cv2.imshow("Find Faces!", img)#显示检测出人脸图片
cv2.waitKey(0)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wy313622821

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值