1、视频转成多个图片
知识点:
- 开启线程
- 使用cv2把视频转成一帧帧的图片
import cv2
import os
import threading
video_path = "D:/video11/";#存放视频的文件夹
pic_path = "D:/pic22/";#生成图片后保存到的文件夹
filelist = os.listdir(video_path) # 返回指定的文件夹下包含的文件或文件夹名字的列表,这个列表按字母顺序排序。
def video2pic(filename):
# print(filename)
cnt = 0
dnt = 0
if os.path.exists(pic_path + str(filename)):
pass
else:
os.mkdir(pic_path + str(filename))
cap = cv2.VideoCapture(video_path + str(filename)) # 读入视频
while True:
ret, image = cap.read()
if image is None:
break
# show a frame
w = image.shape[1]
h = image.shape[0]
if (cnt % 20) == 0:
cv2.imencode('.jpg', image)[1].tofile(pic_path + str(filename) + '/' + str(dnt) + '.jpg')
# cv2.imwrite('C:/Users/JiangHuiQi/Desktop/pic/' + str(filename) + '/' + str(dnt) + '.jpg', image) #含中文路径,不可行
print(pic_path + str(filename) + '/' + str(dnt) + '.jpg')
dnt = dnt + 1
cnt = cnt + 1
if cv2.waitKey(1) & 0xFF == ord('q'):
print("=全部转换完成=")
break
cap.release()
if __name__ == '__main__':
for filename in filelist:
threading.Thread(target=video2pic, args=(filename,)).start()
2、多个图片组合成视频
import os
import cv2
# 需要修改:1、图片路径。2、视频大小size。3、图片是png还是jpg。4、视频帧
path = 'D:/pic22/22/'#需要调用的图片路径 例如:C:/picture/
filelist = os.listdir(path)
fps = 10 #视频每秒24帧,越小就越慢
size = (640, 360) #需要转为视频的图片的尺寸640, 480,要根据图片的大小来转
#可以使用cv2.resize()进行修改
# video = cv2.VideoWriter("VideoTest1.avi", cv2.VideoWriter_fourcc('I', '4', '2', '0'), fps, size)# 这里的格式有mp4v和avi
video = cv2.VideoWriter("VideoTest1.mp4v", cv2.VideoWriter_fourcc('I', '4', '2', '0'), fps, size)# 这里的格式有mp4v和avi,I420可以换成其他
#视频保存在当前目录下
for item in filelist:
if item.endswith('.jpg'):
#找到路径中所有后缀名为.png的文件,可以更换为.jpg或其它
item = path + item
img = cv2.imread(item)
video.write(img)
video.release()
cv2.destroyAllWindows()
3、在图片中换脸
简介:本功能实现,主要是使用旷世的换脸接口,需要自己去注册一个账号,然后把api_key和api_secret拷贝进里面的代码。亲测可用
import requests
import json
import simplejson
import base64
# ********使用旷世的换脸接口**********
# 第一步:获取人脸关键点
# 参数imgpath: 图片的地址 ,返回return: 一个字典类型的人脸关键点 如:{'top': 156, 'left': 108, 'width': 184, 'height': 184}
def find_face(imgpath):
http_url = 'https://api-cn.faceplusplus.com/facepp/v3/detect' # 获取人脸信息的接口
data = {
# "api_key":"x2NyKaa6vYuArYwat4x0-NpIbM9CrwGU",#访问url所需要的参数
# "api_secret":"OuHx-Xaey1QrORwdG7QetGG5JhOIC8g7",#访问url所需要的参数
"api_key": "2JbQvk6ZxxbGC6Kas6_CQujs3bY7JwJT", # 访问url所需要的参数
"api_secret": "gzfYk-LKqCpMZrnAnY6Vvkg7L-HlFc0f", # 访问url所需要的参数
"image_url": imgpath, # 图片地址
"return_landmark": 1
}
files = {'image_file': open(imgpath, 'rb')} # 定义一个字典存放图片的地址
response = requests.post(http_url, data=data, files=files)
res_con1 = response.content.decode('utf-8')
res_json = simplejson.loads(res_con1)
faces = res_json['faces']
list = faces[0]
rectangle = list['face_rectangle']
return rectangle
# 第二步:实现换脸
#:参数 image_url1: 被换脸的图片路径
#:参数 image_url2: 换脸的图片路径
#:参数 image_url: 换脸后生成图片所保存的路径
#:参数 number: 换脸的相似度
def merge_face(image_url1, image_url2, image_url, number):
# 首先获取两张图片的人脸关键点
face1 = find_face(image_url1)
face2 = find_face(image_url2)
# 将人脸转换为字符串的格式
rectangle1 = str(
str(face1['top']) + "," + str(face1['left']) + "," + str(face1['width']) + "," + str(face1['height']))
rectangle2 = str(
str(face2['top']) + "," + str(face2['left']) + "," + str(face2['width']) + "," + str(face2['height']))
# 读取两张图片
f1 = open(image_url1, 'rb')
f1_64 = base64.b64encode(f1.read())
f1.close()
f2 = open(image_url2, 'rb')
f2_64 = base64.b64encode(f2.read())
f2.close()
url_add = 'https://api-cn.faceplusplus.com/imagepp/v1/mergeface' # 实现换脸的接口
data = {
# "api_key": "x2NyKaa6vYuArYwat4x0-NpIbM9CrwGU",
# "api_secret": "OuHx-Xaey1QrORwdG7QetGG5JhOIC8g7",
"api_key": "2JbQvk6ZxxbGC6Kas6_CQujs3bY7JwJT", # 访问url所需要的参数
"api_secret": "gzfYk-LKqCpMZrnAnY6Vvkg7L-HlFc0f", # 访问url所需要的参数
"template_base64": f1_64,
"template_rectangle": rectangle1,
"merge_base64": f2_64,
"merge_rectangle": rectangle2,
"merge_rate": number
}
response1 = requests.post(url_add, data=data)
res_con1 = response1.content.decode('utf-8')
res_dict = json.JSONDecoder().decode(res_con1)
result = res_dict['result']
imgdata = base64.b64decode(result)
file = open(image_url, 'wb')
file.write(imgdata)
file.close()
if __name__ == '__main__':
image1 = r"meizi1.png" # 被换脸的图片路径
image2 = r"meizi.png" # 换脸的图片路径
image3 = r"face1.png" # 换脸后生成图片所保存的路径
merge_face(image1, image2, image3, 100)
4、人脸检测
import cv2
# 指定图片的人脸识别然后存储
img = cv2.imread("face2.jpg")#需要检测的图片
color = (0, 255, 0)
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
classfier = cv2.CascadeClassifier("D:/Python37-32/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml")
# 在硬盘里寻找文件haarcascade_frontalface_default,然后把找到的路径写到上一行代码
faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects) > 0: # 大于0则检测到人脸
for faceRect in faceRects: # 单独框出每一张人脸
x, y, w, h = faceRect
cv2.rectangle(img, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 3) # 5控制绿色框的粗细
# 写入图像
cv2.imwrite('output.jpg', img)#存储检测出人脸图片
cv2.imshow("Find Faces!", img)#显示检测出人脸图片
cv2.waitKey(0)