这个博客源于概率论复习期间,蒙特卡罗方法的思想起源,这种求 π \pi π的思路非常的巧妙
附:历史上用蒲丰投针实验估计圆周率的实验记录,来源
蒲丰投针
蒲丰投针实验是法国数学家、自然科学家“乔治-路易·勒克莱尔·德·蒲丰”在18世纪提出的。
其实验方法极其简单:
- 取出一张白纸,在白纸上画出一组平行等距的直线。
- 将纸平放,任意地向白纸上抛一枚长度为直线间距一半的针
- 多次投针,记录下针与直线相交的次数和总的投针次数,最后相除算出针与直线相交的概率
你会惊奇地发现此概率为圆周率的倒数(1/ π)
蒲丰投针实验是第一个用几何形式表达概率问题的例子。我们可以用这种方法来估计圆周率π
蒲丰投针原理
如图,构造一组平行线,间距为a
随机扔一些棍子(针),长度为l
以左下角这根相交的棍子为例,选取其中点,垂直做线到下方平行线,记长度为x;这个棍子与平行线交角为
φ
\varphi
φ
棍子与平行线相交的要求是
x
≤
l
∗
s
i
n
φ
2
x\leq\frac{l*sin\varphi}{2}
x≤2l∗sinφ
为什么会这样呢?接下来我们来继续分析。先画一个三角形,斜边为棍子l,下边为上图的平行线(模拟情况是刚刚好与平行线相交)
如果想要下边界与棍子相交,则x必须要小于
l
∗
s
i
n
φ
2
\frac{l*sin\varphi}{2}
2l∗sinφ,上边界也是同理。这里一定要注意理解x的定义
既然有了这样的一个数学表达式可以把棍子与平行线相交问题转化,接下来我们就可以通过数学方法来求概率了
这里牵涉到概率论最基本的一些求解知识,不做更具体的说明了
接下来我们可以通过面积比来计算概率
而当投掷数量足够大的时候,我们也可以用投掷比来计算概率,近似可以相等
所以,当棍子长度只有平行线间距一半的时候,可以直接用
1
π
\frac{1}{\pi}
π1来代替概率,也就是说
π
=
1
p
\pi=\frac{1}{p}
π=p1
去年写的,才发现没发,丢草稿箱了,hhh