使用定义判断函数的奇偶性

题目

判断函数 f ( x ) = l n ( x + 1 + x 2 ) f(x)=ln(x+\sqrt{1+x^{2}}) f(x)=ln(x+1+x2 ) 的奇偶性。

解析

本题用到的知识点

l o g a ( M N ) = l o g a M + l o g a N log_{a}(MN)=log_{a}M+log_{a}N loga(MN)=logaM+logaN

在 MATLAB (下面的代码在 MATLAB 9.1.0.441655 (R2016b) 中测试通过) 中输入如下代码:

x=0:0.01:10;
semilogy(x,log(x))

可以绘制出 y = l n ( x ) y=ln(x) y=ln(x) 的图像:

1
图 1

有图像可以看到,自然对数 l n ( x ) ln(x) ln(x) 只在 ( 0 , + ∞ ) (0,+\infty) (0,+) 的区间里有定义,不符合对数函数或者偶数函数对于“定义域 X X X 关于原点对称”的要求。不过题目中的函数可以看作是一个符合函数,因此,我们还需要结合 g ( x ) = x + 1 + x 2 g(x)=x+\sqrt{1+x^{2}} g(x)=x+1+x2 的定义域来确定 f ( x ) f(x) f(x) 的定义域。

因为:

1 + x 2 > x 2 > ∣ x ∣ > 0 \sqrt{1+x^{2}}>\sqrt{x^{2}}>|x|>0 1+x2 >x2 >x>0

则:

x ∈ ( − ∞ , + ∞ ) x\in (-\infty,+\infty) x(,+) x + 1 + x 2 > 0 x+\sqrt{1+x^{2}} > 0 x+1+x2 >0 满足自然对数函数 l n ( x ) ln(x) ln(x) 对定义域的要求,而且,当 x = 0 x=0 x=0 时, f ( x ) = l n ( 1 ) = 0 f(x)=ln(1)=0 f(x)=ln(1)=0, 也满足奇函数“当f(x)在原点处有定义时,f(0)=0”的要求。

到这里,定义域的问题解决了,下面要解决的是函数是关于 y y y 轴对称,还是关于原点对称的问题。

由于:

f ( x ) = l n ( x + 1 + x 2 ) f(x)=ln(x+\sqrt{1+x^{2}}) f(x)=ln(x+1+x2 )

f ( − x ) = l n ( − x + 1 + x 2 ) f(-x)=ln(-x+\sqrt{1+x^{2}}) f(x)=ln(x+1+x2 )

则:

f ( x ) + f ( − x ) = l n ( 1 + x 2 + x ) + l n ( 1 + x 2 − x ) = l n [ ( 1 + x 2 + x ) ( 1 + x 2 − x ) ] = l n ( 1 + x 2 − x 2 ) = l n ( 1 ) = 0 f(x)+f(-x)=ln(\sqrt{1+x^{2}}+x)+ln(\sqrt{1+x^{2}}-x)=ln[(\sqrt{1+x^{2}}+x)(\sqrt{1+x^{2}}-x)]=ln(1+x^{2}-x^{2})=ln(1)=0 f(x)+f(x)=ln(1+x2 +x)+ln(1+x2 x)=ln[(1+x2 +x)(1+x2 x)]=ln(1+x2x2)=ln(1)=0

上面的运算结果符合奇函数的定义,因此, f ( x ) = l n ( x + 1 + x 2 ) f(x)=ln(x+\sqrt{1+x^{2}}) f(x)=ln(x+1+x2 ) 是一个奇函数。

此外,使用 WolframAlpha 画出的函数 f ( x ) = l n ( x + 1 + x 2 ) f(x)=ln(x+\sqrt{1+x^{2}}) f(x)=ln(x+1+x2 ) 的图像如下:

2
图 2. 图片来自 https://www.wolframalpha.com/

由图像我们也可以看出这是一个奇函数。

EOF

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值