Dify1.0.0部署与使用(Dify+DeepSeek+飞书)

一 背景

     Dify v1.0.0正式发布了,对于AI爱好者是一个好消息,这次的新版本部署使用,也跟大家分享一下。主要更新为官方主推Dify 插件机制已上线,对比了原来0.15.3版本,新版本更加有趣,灵活可插拔,并形成了更开放的dify插件和开发生态,这样就有必要跟大家分享一下安装部署和应用了,本次也跟大家分享一下关联 dify-1.0.0 + DeepSeekr1:7b + 飞书,给大家抛砖引玉更好的部署理解并应用。

二 Docker-compse安装Dify1.0.0

GitHub官方地址:https://github.com/langgenius/dify,注意要选择tag的分支为https://github.com/langgenius/dify/tree/1.0.0的版本,很多小伙伴直接用main分支不注意会造成很多问题哦,要切换1.0.0。

1 下载difi-1.0.0,也可以直接下载dify-1.0.0.zip,然后解压,然后直接进入到:解压目录/dify/dify-1.0.0/docker中,并终端进入到列表中。

2 目录将默认环境变量env进行修改使用:

cp .env.example .env

当前目录可以找到,其中.env文件内容是官方写的环境及启动加载初始化信息,这些可以修改对应其地址,端口,参数等,默认先不修改,按照干净环境进行演示。

3 然后拉取镜像与启动docker-compose.yaml的dify-1.0.0服务了,默认使用如下命令启动即可。

    如果使用默认docker-compose.yaml,直接如下启动:

   

  docker-compose up -d 

   笔者为了区分将docker-compose.yaml改名为docker-compose-dify-1.0.0.yaml,同时在docker-compose-dify-1.0.0.yaml中添加了名字的参数 name: 'dify-1.0.0' ,所以启动命令指定了修改后的配置文件(这部分可以跳过,根据个人喜好):

1 复制新文件。

    cp docker-compose.yaml docker-compose-dify-1.0.0.yaml

2 修改复制的新文件增加标签name,避免启动后与其他混淆。

vi docker-compose-dify-1.0.0.yaml

3 docker-compose指定启动修改后的yaml文件。

docker-compose -f docker-compose-dify-1.0.0.yaml up -d

 按照命令会进行拉取镜像并启动,如果在拉取镜像有问题或者报错,可以参考笔者之前的博客解决:Docker部署AI应用国内镜像问题-CSDN博客

4 启动正常后即可访问本地的dify-1.0.0,刚开始需要建立一个:管理员账号,邮箱,账号,密码,

管理员配置这里跳过,大家自己配置后记录好。

第一次访问本地,默认env的nginx服务配置80端口,然后设置管理员用户:

http://localhost/install

完成后登录账号即可享受dify-1.0.0版本。

三 dify-1.0.0使用插件DeepSeek+飞书集成

1 由于笔者之前就已经安装过本地的DeepSeek-r1:7b模型,只要终端启动运行即可。不清楚的朋友们可以看笔者之前的博客本地部署DeepSeek精简易懂(Ollama支持多种LLM模型)_ollama chrome插件-CSDN博客

 终端直接启动后成功运行即可:

Mac ~ % ollama run DeepSeek-r1:7b
>>> Send a message (/? for help)

2 进入管理员后,选择用户左边插件图标,然后即可选择安装插件,其中感觉Marketplace和本地安装更快一些,根据喜好,本地需要提前搜索并下载好插件文件。

3 也可以通过官方https://marketplace.dify.ai/?language=zh-Hans&q=&tags=商城搜索没有的插件,下载本地后,进行本地安装。(感觉商城直接搜索不好用,建议标签选择社交,然后下拉找到飞书插件),下载后并进行插件安装即可。

4 插件都安装完成后,我们开始配置模型引用本地DeepSeek模型,找到用户下面的设置:

5 找到设置中的模型供应商,使用刚安装过的Ollama模型,并配置刚才启动的DeepSeek-r1:b模型,注意模型名称不要写错,同时url根据官方推荐,容器需要引用地址需要映射如下端口地址,然后保存模型即可使用该模型。(笔者这遇到的坑,本地配置报错,插件官方说明了如下url用于docker部署引用本地ollama模型,如果使用第三方API则正常配置即可)

http://host.docker.internal:11434

6 以上OK后我们在飞书可以创建一个群聊,并安装一个群聊机器人,获取群聊机器人的webhook地址信息,最有包含key,这个要保存好,这里需要使用飞书,不懂的小伙伴们需要自己尝试。

7 这样我们可以应用关联工作流中,工作室中创建空白应用,并选择工作流输入信息并保存:

8 工作流进行添加LLM部分,选择导入过得模型,其中写入想要的问题对话,输出变量为text string这个要记录作为后面输入:

9 工作流进行添加飞书模块部分,添加上游LLM的接收参数,这里面【输入变量-消息内容】窗口输入' \ '可以快速选择 ,然后填入飞书群聊机器人key,即可调试发送,然后设置结束。

10 我们点击右上角运行,或者发布使用,即可在飞书群聊中接收到dify发送的信息如下:

以上测试显示运行SUCCESS,飞书群聊接收机器消息成功:

四 总结

    致此,新版本dify-1.0.0插件+DeepSeek+飞书的部署及使用测试完成,其实笔者只是用了简单的例子,也支持企业微信,钉钉等,dify的开源与良好生态都是值得点赞并支持的,祝大家工作顺利,身体健康,您的支持是我更新的持续动力,请大帅哥大美女们支持点赞关注,感谢!

<think>嗯,用户想了解如何使用Dify构建知识库。首先,我需要回忆一下之前提供的引用内容。引用[1]提到Dify构建本地知识库的流程和其他系统类似,比如FastGPT、MaxKB等,大同小异。引用[2]则介绍了Dify的应用场景和部署方式,包括使用云服务或本地部署。 用户需要的是具体步骤和最佳实践,可能包括环境准备、知识库创建、配置优化、集成测试等。要确保回答结构清晰,分步骤说明。同时,用户可能关心如何上传数据、处理不同格式的文件,以及如何集成到现有应用中。 还要注意用户可能遇到的常见问题,比如数据预处理、多格式支持、版本管理和权限设置。需要根据引用内容,结合Dify的官方文档,给出具体的操作步骤,比如在Dify界面中创建知识库的位置、文件上传方法、分割参数的设置等。 另外,用户可能需要示例教程,所以应该提供参考链接或指导他们查找官方文档。同时,生成的相关问题要围绕Dify使用场景、优化方法和企业级应用展开,帮助用户进一步探索。</think>以下是如何使用 Dify 构建知识库的分步指南,结合最佳实践和关键注意事项: ### 一、环境准备 1. **部署方式选择** - **云服务版**:直接访问 https://cloud.dify.ai 注册使用 - **本地部署**:通过 Docker 部署(推荐配置): ```bash docker run -d --name dify \ -p 80:80 \ -e LOGO_URL=/your-logo.png \ -e APP_LANG=zh \ --restart=always \ ghcr.io/langgenius/dify:latest ``` ### 二、知识库创建流程 1. **新建应用** - 控制台 → 创建应用 → 选择「知识库增强型」类型 2. **数据上传** - 支持格式:PDF/DOCX/TXT/Markdown/网页链接(自动爬取) - 最佳实践: * 单个文件建议 <10MB * 中文文档推荐使用「中文文本分割器」 * 设置合适的分块大小(默认512 tokens) 3. **特征配置 $$ RAG_{score} = \alpha \cdot T_{relevance} + \beta \cdot S_{context} $$ 其中 $T_{relevance}$ 表示文本相关度,$S_{context}$ 为上下文连贯性评分[^1] ### 三、进阶配置技巧 1. **多源数据集成** - 同时连接 Notion、飞书文档等第三方平台 - 支持 API 实时同步更新 2. **查询优化 ```python # 伪代码示例:混合检索策略 def hybrid_retrieval(query): vector_results = vector_search(query) keyword_results = bm25_search(query) return rerank(vector_results + keyword_results) ``` 3. **效果验证** - 使用内置的测试问答界面验证召回准确率 - 查看知识命中率分析报表 ### 四、企业级实践建议 1. **权限管理** - 通过 RBAC 实现文档级访问控制 - 设置审计日志记录所有数据操作 2. **版本管理** - 支持知识库的版本回滚 - 可配置定时自动更新策略
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值