一 背景
Dify v1.0.0正式发布了,对于AI爱好者是一个好消息,这次的新版本部署使用,也跟大家分享一下。主要更新为官方主推Dify 插件机制已上线,对比了原来0.15.3版本,新版本更加有趣,灵活可插拔,并形成了更开放的dify插件和开发生态,这样就有必要跟大家分享一下安装部署和应用了,本次也跟大家分享一下关联 dify-1.0.0 + DeepSeekr1:7b + 飞书,给大家抛砖引玉更好的部署理解并应用。
二 Docker-compse安装Dify1.0.0
GitHub官方地址:https://github.com/langgenius/dify,注意要选择tag的分支为https://github.com/langgenius/dify/tree/1.0.0的版本,很多小伙伴直接用main分支不注意会造成很多问题哦,要切换1.0.0。
1 下载difi-1.0.0,也可以直接下载dify-1.0.0.zip,然后解压,然后直接进入到:解压目录/dify/dify-1.0.0/docker中,并终端进入到列表中。
2 目录将默认环境变量env进行修改使用:
cp .env.example .env
当前目录可以找到,其中.env文件内容是官方写的环境及启动加载初始化信息,这些可以修改对应其地址,端口,参数等,默认先不修改,按照干净环境进行演示。
3 然后拉取镜像与启动docker-compose.yaml的dify-1.0.0服务了,默认使用如下命令启动即可。
如果使用默认docker-compose.yaml,直接如下启动:
docker-compose up -d
笔者为了区分将docker-compose.yaml改名为docker-compose-dify-1.0.0.yaml,同时在docker-compose-dify-1.0.0.yaml中添加了名字的参数 name: 'dify-1.0.0' ,所以启动命令指定了修改后的配置文件(这部分可以跳过,根据个人喜好):
1 复制新文件。
cp docker-compose.yaml docker-compose-dify-1.0.0.yaml
2 修改复制的新文件增加标签name,避免启动后与其他混淆。
vi docker-compose-dify-1.0.0.yaml
3 docker-compose指定启动修改后的yaml文件。
docker-compose -f docker-compose-dify-1.0.0.yaml up -d
按照命令会进行拉取镜像并启动,如果在拉取镜像有问题或者报错,可以参考笔者之前的博客解决:Docker部署AI应用国内镜像问题-CSDN博客
4 启动正常后即可访问本地的dify-1.0.0,刚开始需要建立一个:管理员账号,邮箱,账号,密码,
管理员配置这里跳过,大家自己配置后记录好。
第一次访问本地,默认env的nginx服务配置80端口,然后设置管理员用户:
http://localhost/install
完成后登录账号即可享受dify-1.0.0版本。
三 dify-1.0.0使用插件DeepSeek+飞书集成
1 由于笔者之前就已经安装过本地的DeepSeek-r1:7b模型,只要终端启动运行即可。不清楚的朋友们可以看笔者之前的博客本地部署DeepSeek精简易懂(Ollama支持多种LLM模型)_ollama chrome插件-CSDN博客。
终端直接启动后成功运行即可:
Mac ~ % ollama run DeepSeek-r1:7b
>>> Send a message (/? for help)
2 进入管理员后,选择用户左边插件图标,然后即可选择安装插件,其中感觉Marketplace和本地安装更快一些,根据喜好,本地需要提前搜索并下载好插件文件。
3 也可以通过官方https://marketplace.dify.ai/?language=zh-Hans&q=&tags=商城搜索没有的插件,下载本地后,进行本地安装。(感觉商城直接搜索不好用,建议标签选择社交,然后下拉找到飞书插件),下载后并进行插件安装即可。
4 插件都安装完成后,我们开始配置模型引用本地DeepSeek模型,找到用户下面的设置:
5 找到设置中的模型供应商,使用刚安装过的Ollama模型,并配置刚才启动的DeepSeek-r1:b模型,注意模型名称不要写错,同时url根据官方推荐,容器需要引用地址需要映射如下端口地址,然后保存模型即可使用该模型。(笔者这遇到的坑,本地配置报错,插件官方说明了如下url用于docker部署引用本地ollama模型,如果使用第三方API则正常配置即可)
http://host.docker.internal:11434
6 以上OK后我们在飞书可以创建一个群聊,并安装一个群聊机器人,获取群聊机器人的webhook地址信息,最有包含key,这个要保存好,这里需要使用飞书,不懂的小伙伴们需要自己尝试。
7 这样我们可以应用关联工作流中,工作室中创建空白应用,并选择工作流输入信息并保存:
8 工作流进行添加LLM部分,选择导入过得模型,其中写入想要的问题对话,输出变量为text string这个要记录作为后面输入:
9 工作流进行添加飞书模块部分,添加上游LLM的接收参数,这里面【输入变量-消息内容】窗口输入' \ '可以快速选择 ,然后填入飞书群聊机器人key,即可调试发送,然后设置结束。
10 我们点击右上角运行,或者发布使用,即可在飞书群聊中接收到dify发送的信息如下:
以上测试显示运行SUCCESS,飞书群聊接收机器消息成功:
四 总结
致此,新版本dify-1.0.0插件+DeepSeek+飞书的部署及使用测试完成,其实笔者只是用了简单的例子,也支持企业微信,钉钉等,dify的开源与良好生态都是值得点赞并支持的,祝大家工作顺利,身体健康,您的支持是我更新的持续动力,请大帅哥大美女们支持点赞关注,感谢!