机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)

对于初学者来说,scikit-learn 是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的 API 设计,确保能够快速上手并进行各种机器学习任务。通过使用 scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。

所以scikit-learn 能轻松实现从数据预处理到模型训练和评估的完整流程。

此外在推荐一个适合初学者的深度学习平台工具google colab


目录

1 scikit-learn 介绍

1.1 scikit-learn 的核心特点

1.2 scikit-learn 的应用场景

1.3 scikit-learn 的工作流程

1.4 scikit-learn 的优势

 2 Jupyter Notebook 介绍

3 Google Colab:无需自行安装环境的机器学习工具

3.1 为什么选择 Google Colab?

3.2 Google Colab 的主要特点

3.3 如何使用 Google Colab


scikit-learn 介绍

简而言之,scikit-learn 是一个机器学习库,可用于:

  • 训练机器学习模型:训练分类、回归、聚类等不同类型的机器学习模型。
  • 数据预处理:提供了许多方法来处理数据,例如数据标准化、缺失值处理等。
  • 模型评估:提供了多种工具来评估模型的表现,如交叉验证、准确率、精确度、召回率等。
1.1 scikit-learn 的核心特点
  • 简单易用: API 清晰,代码结构规范,能快速理解并开始使用。
  • 广泛的算法支持:scikit-learn 提供了分类(如决策树、随机森林、支持向量机等)、回归(如线性回归、岭回归等)、聚类(如 K-Means、DBSCAN 等)等众多机器学习算法。
  • 数据预处理功能:它内置了强大的数据预处理工具,对数据进行清洗、标准化、编码等操作。
  • 模型评估与调优:交叉验证和网格搜索等工具。
1.2 scikit-learn 的应用场景

scikit-learn 可以应用于多个数据科学领域,包括但不限于:

  • 分类问题:例如垃圾邮件分类、图片识别、情感分析等任务。
  • 回归问题:例如房价预测、股市趋势预测等任务。
  • 聚类问题:例如客户细分、市场分析等任务。
  • 降维问题:例如主成分分析(PCA),用于数据降维或特征提取。
  • 模型选择与评估:例如模型的交叉验证、性能评估等。
1.3 scikit-learn 的工作流程

对于一个典型的机器学习项目,scikit-learn 的工作流程通常包括以下几个步骤:

  1. 数据收集:获取并准备好数据。
  2. 数据预处理:清洗数据,进行数据转换,如归一化、标准化等。
  3. 选择模型:选择一个适合任务的机器学习模型。
  4. 训练模型:使用训练数据训练模型。
  5. 评估模型:使用测试数据评估模型的表现。
  6. 调优模型:如果模型表现不佳,可以通过调整模型参数(如使用网格搜索)来提高性能。
1.4 scikit-learn 的优势
  • 高效:scikit-learn 基于 NumPy 和 SciPy 构建,能够处理大量的数据并执行复杂的计算。
  • 易于理解:每个模型都遵循相同的接口标准,使得用户可以迅速尝试不同的算法。

 2 Jupyter Notebook 介绍

推荐初学者在开始学习的时候直接使用google colab(不需要在本地安装 Python、Jupyter Notebook 或任何依赖库。只需在浏览器中访问 Colab 即可使用。)所以该处不再啰嗦所提到的Jupyter Notebook和scikit-learn的安装和配置。

Jupyter Notebook 是一个开源 Web 应用,允许你创建和共享文档,其中可以包含代码(通常是 Python)、文本、可视化以及数学公式。Jupyter 被广泛应用于数据分析、机器学习、科学计算、教学等多个领域。


3 Google Colab:无需自行安装环境的机器学习工具

非常好用的一个深度学习工具平台。

Google Colab(全称 Google Colaboratory)是 Google 提供的一个基于云端的 Jupyter Notebook 环境,可直接在浏览器中编写和执行 Python 代码。Google Colab 的最大优势之一是它提供了免费的 GPU 和 TPU 支持,极大地提升了深度学习的学习速度。

3.1 为什么选择 Google Colab?
  1. 无需安装:不需要在本地安装 Python、Jupyter Notebook 或任何依赖库。只需在浏览器中访问 Colab 即可使用。
  2. 云端计算资源:Colab 提供免费的 GPU 和 TPU 支持,可以在没有硬件支持的情况下,进行学习和使用。
  3. 与 Google Drive 集成:可以直接将笔记本保存在 Google Drive 中,便于管理和共享。
  4. 支持多种 Python 库:Colab 默认安装了许多流行的机器学习和数据分析库,如 TensorFlow、Keras、PyTorch、scikit-learn 等。
3.2 Google Colab 的主要特点
  1. 免费使用 GPU 和 TPU

  2. 无需安装环境

  3. 基于 Jupyter Notebook:Colab 本质上是一个基于 Jupyter Notebook 的平台

  4. Google Drive 集成:Colab 可以直接访问你的 Google Drive 文件,方便你保存和加载数据集以及训练模型。

  5. 协作功能

3.3 如何使用 Google Colab
  1. 访问 Google Colab

    • 打开浏览器,访问 https://colab.research.google.com。
    • 你需要登录 Google 账户,登录后可以开始创建新的笔记本或打开已有的笔记本。
  2. 创建新的笔记本

    • 在 Colab 中,点击 File > New Notebook 创建一个新的笔记本。
  3. 选择计算资源(GPU/TPU)

    • 如果你需要 GPU 或 TPU 进行加速,可以选择 Runtime > Change runtime type
    • 在弹出的设置窗口中,选择 GPUTPU 作为硬件加速器。
  4. 安装额外的 Python 库

    • Colab 已经预装了许多常用的机器学习库(如 TensorFlow、Keras、scikit-learn 等)。如果需要安装额外的库,可以通过运行以下命令安装:

      !pip install <package_name>

  5. 与 Google Drive 集成

    • 在 Colab 中访问 Google Drive 文件,授权并挂载 Google Drive

      from google.colab import drive drive.mount('/content/drive')

    • 授权后,可以访问存储在 Google Drive 中的文件,进行数据加载或保存训练好的模型。

使用Google Colab会极大简化了机器学习的学习过程。尤其没有强大硬件支持和技术基础的情况下,使用Google Colab 是一个非常完美的选择。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值