完美旗手队列
YT大学定于5月16日举行校运动会。学校有 n 个系。组委会要求每个系有 m 个运动员参加开幕式,并且每个系的 m 个运动员站成一队。我们假设 n*m 名运动员站成一个n行m列的队列,表示为Anm:下图中的每一行代表一个系。
a11 a12 a13 … a1m
a21 a22 a23 … a2m
… … … … …
an1 an2 an3 … anm
现组委会要求每系在 m 个运动员中选出一名旗手站在本系的前面,为了视觉上的美观,要求相邻的旗手身高差距尽可能的小,形成一个完美旗手队列。比如我们从上述队列中选择出{a12, a24, a33, … , ank}作为旗手队列。则这n个人的身高差最小的队列是完美旗手队列。比如有4个系,各系选择的旗手分别为a,b, c, d, 则 val=|a-b|+|b-c|+|c-d| 最小的选择为完美旗手队列。你能帮YT大学选择完美旗手队列吗?
Input
多个测试样例,每个测试样例第一行为两个整数n, m (1 <= n, m <= 1000) ,接着是n行整数数列,表示原始的队列,整数值表示运动员的身高(<=10000)。
Output
对于每一个测试样例,输出最小的val值。
Sample Input
3 32 3 14 7 67 9 2
Sample Output
3
//先对数组每一行进行从小到大排序,用lower_bound从第二行开始找上一行
//大于a[i][j]的数,找到后返回此数的下标t,再分两种情况,与b[i][j]比较
//找到后不仅要与a[i][t]比较也要与它前一个数比较,因为绝对值最小的情况只
//可能出现在这俩数当中
//因为也有找不到的情况,这时候所以就把t-1那个数再与b[i][j]比较
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#define inf 1<<30
#define MIN(a,b) a>b?b:a
int a[1001][1001];
int b[1001][1001];
using namespace std;
int main()
{
int i,j;
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=0;i<n;i++)
{
for(j=0;j<m;j++)
{
scanf("%d",&a[i][j]);
}
sort(a[i],a[i]+m);
}
memset(b,0,sizeof(b));
for(i=1;i<n;i++)
{
for(j=0;j<m;j++)
{
b[i][j]=inf;
int t=lower_bound(a[i-1],a[i-1]+m,a[i][j])-a[i-1];
if(t<m)
{
b[i][j]=MIN(b[i][j],b[i-1][t]+abs(a[i][j]-a[i-1][t]));
}
if(t>0)
{
b[i][j]=MIN(b[i][j],b[i-1][t-1]+abs(a[i][j]-a[i-1][t-1]));
}
}
}
int mi=9999;
for(i=0;i<m;i++)
{
mi=MIN(mi,b[n-1][i]);
}
printf("%d\n",mi);
}
return 0;
}