题目大意如下:
Longest Palindromic Subsequence:
给定一个整数序列,找出最长回文子序列。
Longest Palindromic Substring :
给定一个整数序列,找出最长回文子串。
注:子串为连续的,子序列不一定是连续的。
解题思路:
Longest Palindromic Subsequence:
用动态规划( O(n²) ),从区间长度为1开始,考虑从每个字符开始的每个区间。
dp[i][j]:区间序列[i,j](从字符s[i]到字符s[j])中最长回文子序列。
状态转移方程:
if(s[i] == s[j])
dp[i][j] = dp[i+1][j-1]+2 ;
else
dp[i][j] = max(dp[i+1][j] , dp[i][j-1]) ;
代码如下:
class Solution {
public:
int longestPalindromeSubseq(string s) {
vector<vector<int> > dp(s.size() , vector<int>(s.size() , 1)) ;
int right = 0 ;
for(int len = 1 ; len <= s.size() ; ++len){
for(int left = 0 ; left+len-1 < s.size() ; ++left){
right = left+len-1 ;
if(len == 1){
dp[left][right] = 1 ;
}
else if(len == 2){
dp[left][right] = s[left] == s[right] ? 2:1 ;
}
else{
int choose_1 = dp[left+1][right-1]+2 ;
int choose_2 = max(dp[left+1][right],dp[left][right-1]) ;
dp[left][right] = s[left] == s[right] ? choose_1:choose_2 ;
}
}
}
return dp[0][s.size()-1] ;
}
};