题目描述
农夫约翰想要建造一个围栏用来围住他的奶牛,可是他资金匮乏。他建造的围栏必须包括他的奶牛喜欢吃草的所有地点。对于给出的这些地点的坐标,计算最短的能够围住这些点的围栏的长度。
输入输出格式
输入格式:输入数据的第一行包括一个整数 N。N(0 <= N <= 10,000)表示农夫约翰想要围住的放牧点的数目。接下来 N 行,每行由两个实数组成,Xi 和 Yi,对应平面上的放牧点坐标(-1,000,000 <= Xi,Yi <= 1,000,000)。数字用小数表示。
输出格式:输出必须包括一个实数,表示必须的围栏的长度。答案保留两位小数。
以下为代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=10000+10;
struct node{
double x,y;
}a[maxn];
int stack[maxn],top;
bool cmp(node a,node b){
return a.x<b.x;
}
double dis(int u,int v){
return sqrt((a[u].x-a[v].x)*(a[u].x-a[v].x)+(a[u].y-a[v].y)*(a[u].y-a[v].y));
}
bool pd(int u,int v,int w){
return (a[u].y-a[v].y)*(a[v].x-a[w].x)>(a[u].x-a[v].x)*(a[v].y-a[w].y);
}
int main(){
int n,i;
cin>>n;
for(i=1;i<=n;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
sort(a+1,a+n+1,cmp);
top=2;
stack[1]=1;stack[2]=2;
for(i=3;i<=n;i++){
while(top>1 && !pd(i,stack[top],stack[top-1]))top--;
stack[++top]=i;
}
double ans=0;
for(i=1;i<top;i++)
ans+=dis(stack[i],stack[i+1]);
top=2;
stack[1]=1;stack[2]=2;
for(i=3;i<=n;i++){
while(top>1 && pd(i,stack[top],stack[top-1]))top--;
stack[++top]=i;
}
for(i=1;i<top;i++)
ans+=dis(stack[i],stack[i+1]);
printf("%.2lf",ans);
return 0;
}