HDU1098

本文介绍了一个数学难题,通过分析函数f(x)=5*x^13+13*x^5+k*a*x,探讨如何寻找特定参数a,使对于任意整数x,f(x)能够被65整除。利用数学归纳法和二项式定理,最终简化为求解18+k*a能被65整除的问题。
摘要由CSDN通过智能技术生成

Ignatius's puzzle



Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".

 

Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
 

Output
The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
 

Sample Input
  
  
11 100 9999
 

Sample Output
  
  
22 no 43
//	HDU1098 基础题
//	Ignatius's puzzle http://acm.hdu.edu.cn/showproblem.php?pid=1098
//	2017.06.28 by wyj

/*
思路:
则f(x+1 ) = f (x) +  5*( (13  1 ) x^12 ...... .....+(13  13) x^0  )+  13*(  (5  1 )x^4+...........+ ( 5  5  )x^0  )+k*a;

很容易证明,除了5*(13  13) x^0 、13*( 5  5  )x^0 和k*a三项以外,其余各项都能被65整除.
那么也只要求出18+k*a能被65整除就可以了.
而f(1)也正好等于18+k*a:题目的关键是函数式f(x)=5*x^13+13*x^5+k*a*x;
事实上,由于x取任何值都需要能被65整除.那么用数学归纳法.只需找到f(1)成立的a,并在假设f(x)成立的基础上,
证明f(x+1)也成立.
那么把f(x+1)展开,得到5*(  ( 13  0 )x^13 +  (13  1 ) x^12 ...... .....+(13  13) x^0)+13*(  ( 5  0 )x^5+(5  1 )x^4......其实就是二项式展开,这里就省略了  ......+ ( 5  5  )x^0  )+k*a*x+k*a;——————这里的( n  m)表示组合数,相信学过2项式定理的朋友都能看明白.

然后提取出5*x^13+13*x^5+k*a*x。

则f(x+1 ) = f (x) +  5*( (13  1 ) x^12 ...... .....+(13  13) x^0  )+  13*(  (5  1 )x^4+...........+ ( 5  5  )x^0  )+k*a;

很容易证明,除了5*(13  13) x^0 、13*( 5  5  )x^0 和k*a三项以外,其余各项都能被65整除.
那么也只要求出18+k*a能被65整除就可以了.
而f(1)也正好等于18+k*a

所以,只要找到a,使得18+k*a能被65整除,也就解决了这个题目.

假设存在这个数a,因为对于任意x方程都成立,所以,当x=1时f(x)=18+ka;有因为f(x)能被65整出,这可得出f(x)=n*65;

即:18+ka=n*65;若该方程有整数解则说明假设成立。



ax+by = c的方程有解的一个充要条件是:c%gcd(a, b) == 0。

然后枚举直到65*n-18%k == 0为止。
*/


#include
      
      
       
       
#include
       
       
        
        
using namespace std;

int main()
{
	int GCD(int a, int b);
	int k, a;
	while (cin >> k)
	{
		if (GCD(65, k) == 1)
		{
			for (a = 0;;a++)
			{
				if ((18 + k*a) % 65 == 0)
				{
					printf("%d\n", a);
					break;
				}
			}
		}
		else cout << "no" << endl;
	}
}

int GCD(int a, int b)
{
	int temp, r;
	if (a < b)
	{
		temp = a;a = b;b = temp;
	}
	while ((r = a%b) != 0)
	{
		a = b;b = r;
	}
	return b;
}

       
       
      
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值