Ignatius's puzzle
Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".
no exists that a,then print "no".
Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
Output
The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
Sample Input
11 100 9999
Sample Output
22 no 43// HDU1098 基础题 // Ignatius's puzzle http://acm.hdu.edu.cn/showproblem.php?pid=1098 // 2017.06.28 by wyj /* 思路: 则f(x+1 ) = f (x) + 5*( (13 1 ) x^12 ...... .....+(13 13) x^0 )+ 13*( (5 1 )x^4+...........+ ( 5 5 )x^0 )+k*a; 很容易证明,除了5*(13 13) x^0 、13*( 5 5 )x^0 和k*a三项以外,其余各项都能被65整除. 那么也只要求出18+k*a能被65整除就可以了. 而f(1)也正好等于18+k*a:题目的关键是函数式f(x)=5*x^13+13*x^5+k*a*x; 事实上,由于x取任何值都需要能被65整除.那么用数学归纳法.只需找到f(1)成立的a,并在假设f(x)成立的基础上, 证明f(x+1)也成立. 那么把f(x+1)展开,得到5*( ( 13 0 )x^13 + (13 1 ) x^12 ...... .....+(13 13) x^0)+13*( ( 5 0 )x^5+(5 1 )x^4......其实就是二项式展开,这里就省略了 ......+ ( 5 5 )x^0 )+k*a*x+k*a;——————这里的( n m)表示组合数,相信学过2项式定理的朋友都能看明白. 然后提取出5*x^13+13*x^5+k*a*x。 则f(x+1 ) = f (x) + 5*( (13 1 ) x^12 ...... .....+(13 13) x^0 )+ 13*( (5 1 )x^4+...........+ ( 5 5 )x^0 )+k*a; 很容易证明,除了5*(13 13) x^0 、13*( 5 5 )x^0 和k*a三项以外,其余各项都能被65整除. 那么也只要求出18+k*a能被65整除就可以了. 而f(1)也正好等于18+k*a 所以,只要找到a,使得18+k*a能被65整除,也就解决了这个题目. 假设存在这个数a,因为对于任意x方程都成立,所以,当x=1时f(x)=18+ka;有因为f(x)能被65整出,这可得出f(x)=n*65; 即:18+ka=n*65;若该方程有整数解则说明假设成立。 ax+by = c的方程有解的一个充要条件是:c%gcd(a, b) == 0。 然后枚举直到65*n-18%k == 0为止。 */ #include #include using namespace std; int main() { int GCD(int a, int b); int k, a; while (cin >> k) { if (GCD(65, k) == 1) { for (a = 0;;a++) { if ((18 + k*a) % 65 == 0) { printf("%d\n", a); break; } } } else cout << "no" << endl; } } int GCD(int a, int b) { int temp, r; if (a < b) { temp = a;a = b;b = temp; } while ((r = a%b) != 0) { a = b;b = r; } return b; }