一、项目定位与核心价值
LangChain 是 GitHub 上星标超 107K 的大语言模型(LLM)应用开发框架,致力于简化基于大型语言模型的应用开发流程。其核心目标是通过模块化组件和集成工具,帮助开发者快速构建具备上下文感知推理能力的应用,涵盖问答系统、智能聊天机器人、结构化数据提取等场景。项目遵循 MIT 开源协议,最新版本为 langchain-core==0.3.59
,支持 Python 和 JavaScript/TypeScript 双语言生态,日均下载量超 52 万次,已成为 LLM 应用开发的事实标准。
二、核心功能与架构设计
2.1 模块化组件体系
LangChain 通过可组合的组件抽象,降低 LLM 应用开发门槛,主要模块包括:
▶ 模型输入输出(Model I/O)
- 提示词管理:支持模板化提示词设计,如动态填充变量、多轮对话上下文管理。
- 模型接口统一:抽象 ChatModel 接口,无缝对接 OpenAI、Anthropic、Google Vertex 等主流 LLM 提供商,屏蔽底层差异。
from langchain.chat_models import ChatOpenAI model = ChatOpenAI(temperature=0.7) response = model.predict("推荐三部科幻电影")
▶ 检索增强生成(Retrieval)
- 多源数据加载:支持文件(PDF/CSV)、数据库(SQL/VectorDB)、API 等数据源,通过
Retriever
组件实现数据检索。 - RAG 架构支持:结合检索与生成,实现基于外部知识的问答,如:
from langchain.retrievers import WikipediaRetriever retriever = WikipediaRetriever