作者:zhangqh,
原文:https://segmentfault.com/a/1190000012155267
声明一下:下面的优化方案都是基于 “Mysql - 索引 - BTree 类型”。
一 善用 EXPLAIN
做 MySQL 优化,我们要善用 EXPLAIN 查看 SQL 执行计划。
下面来个简单的示例,标注 (1,2,3,4,5) 我们要重点关注的数据
1、type 列: 连接类型。一个好的 sql 语句至少要达到 range 级别。杜绝出现 all 级别 2、key 列: 使用到的索引名。如果没有选择索引,值是 NULL。可以采取强制索引方式 3、key_len 列: 索引长度 4、rows 列: 扫描行数。该值是个预估值 5、Extra 列: 详细说明。注意常见的不太友好的值有:Using filesort, Using temporary
二 SQL 语句中 IN 包含的值不应过多
MySQL 对于 IN 做了相应的优化,即将 IN 中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from table_name where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了;再或者使用连接来替换。
三 SELECT 语句务必指明字段名称
SELECT * 增加很多不必要的消耗(cpu、io、内存、网络带宽);增加了使用覆盖索引的可能性;当表结构发生改变时,前断也需要更新。所以要求直接在 select 后面接上字段名。
四 当只需要一条数据的时候,使用 limit 1
这是为了使 EXPLAIN 中 type 列达到 const 类型
五 如果排序字段没有用到索引, 就尽量少排序
六 如果限制条件中其他字段没有索引,尽量少用 or
or 两边的字段中,如果有一个不是索引字段,而其他条件也不是索引字段,会造成该查询不走索引的情况。很多时候使用 union all 或者是 union(必要的时候)的方式来代替 “or” 会得到更好的效果
七 尽量用 union all 代替 union
union 和 union all 的差异主要是前者需要将结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的 CPU 运算,加大资源消耗及延迟。当然,union all 的前提条件是两个结果集没有重复数据。
八 不使用 ORDER BY RAND()
select id from `table_name` order by rand() limit 1000;
上面的 sql 语句,可优化为
select id from `table_name` t1 join (select rand() * (select max(id) from `table_name`) as nid) t2 ont1.id > t2.nid limit 1000;
九 区分 in 和 exists,not in 和 not exists
select * from 表A where id in (select id from 表B)
上面 sql 语句相当于
select * from 表A where exists(select * from 表B where 表B.id=表A.id)
区分 in 和 exists 主要是造成了驱动顺序的改变(这是性能变化的关键),如果是 exists,那么以外层表为驱动表,先被访问,如果是 IN,那么先执行子查询。所以 IN 适合于外表大而内表小的情况;EXISTS 适合于外表小而内表大的情况。 关于 not in 和 not exists,推荐使用 not exists,不仅仅是效率问题,not in 可能存在逻辑问题。如何高效的写出一个替代 not exists 的 sql 语句?
原 sql 语句
select colname … from A表 where a.id not in (select b.id from B表)
高效的 sql 语句
select colname … from A表 Left join B表 on where a.id = b.id where b.id is null
取出的结果集如下图表示,A 表不在 B 表中的数据
十 使用合理的分页方式以提高分页的效率
select id,name from table_name limit 866613, 20
使用上述 sql 语句做分页的时候,可能有人会发现,随着表数据量的增加,直接使用 limit 分页查询会越来越慢。
优化的方法如下:可以取前一页的最大行数的 id,然后根据这个最大的 id 来限制下一页的起点。比如此列中,上一页最大的 id 是 866612。sql 可以采用如下的写法:
select id,name from table_name where id> 866612 limit 20
十一 分段查询
在一些用户选择页面中,可能一些用户选择的时间范围过大,造成查询缓慢。主要的原因是扫描行数过多。这个时候可以通过程序,分段进行查询,循环遍历,将结果合并处理进行展示。
如下图这个 sql 语句,扫描的行数成百万级以上的时候就可以使用分段查询
十二 避免在 where 子句中对字段进行 null 值判断
对于 null 的判断会导致引擎放弃使用索引而进行全表扫描。
十三 不建议使用 % 前缀模糊查询
例如 LIKE “%name” 或者 LIKE “%name%”,这种查询会导致索引失效而进行全表扫描。但是可以使用 LIKE “name%”。
那如何查询 %name%?
如下图所示,虽然给 secret 字段添加了索引,但在 explain 结果果并没有使用
那么如何解决这个问题呢,答案:使用全文索引
在我们查询中经常会用到 select id,fnum,fdst from table_name where user_name like ‘%zhangsan%’; 。这样的语句,普通索引是无法满足查询需求的。庆幸的是在 MySQL 中,有全文索引来帮助我们。
创建全文索引的 sql 语法是:
ALTER TABLE `table_name` ADD FULLTEXT INDEX `idx_user_name` (`user_name`);
使用全文索引的 sql 语句是:
select id,fnum,fdst from table_name where match(user_name) against('zhangsan' in boolean mode);
注意:在需要创建全文索引之前,请联系 DBA 确定能否创建。同时需要注意的是查询语句的写法与普通索引的区别
十四 避免在 where 子句中对字段进行表达式操作
比如
select user_id,user_project from table_name where age*2=36;
中对字段就行了算术运算,这会造成引擎放弃使用索引,建议改成
select user_id,user_project from table_name where age=36/2;
十五 避免隐式类型转换
where 子句中出现 column 字段的类型和传入的参数类型不一致的时候发生的类型转换,建议先确定 where 中的参数类型
十六 对于联合索引来说,要遵守最左前缀法则
举列来说索引含有字段 id,name,school,可以直接用 id 字段,也可以 id,name 这样的顺序,但是 name;school 都无法使用这个索引。所以在创建联合索引的时候一定要注意索引字段顺序,常用的查询字段放在最前面
十七 必要时可以使用 force index 来强制查询走某个索引
有的时候 MySQL 优化器采取它认为合适的索引来检索 sql 语句,但是可能它所采用的索引并不是我们想要的。这时就可以采用 force index 来强制优化器使用我们制定的索引。
十八 注意范围查询语句
对于联合索引来说,如果存在范围查询,比如 between,>,< 等条件时,会造成后面的索引字段失效。
十九 关于 JOIN 优化
•LEFT JOIN A 表为驱动表 •INNER JOIN MySQL 会自动找出那个数据少的表作用驱动表 •RIGHT JOIN B 表为驱动表
注意:MySQL 中没有 full join,可以用以下方式来解决
select * from A left join B on B.name = A.name
where B.name is null
union all
select * from B;
尽量使用 inner join,避免 left join
参与联合查询的表至少为 2 张表,一般都存在大小之分。如果连接方式是 inner join,在没有其他过滤条件的情况下 MySQL 会自动选择小表作为驱动表,但是 left join 在驱动表的选择上遵循的是左边驱动右边的原则,即 left join 左边的表名为驱动表。
合理利用索引
被驱动表的索引字段作为 on 的限制字段。
利用小表去驱动大表
从原理图能够直观的看出如果能够减少驱动表的话,减少嵌套循环中的循环次数,以减少 IO 总量及 CPU 运算的次数。
巧用 STRAIGHT_JOIN
inner join 是由 mysql 选择驱动表,但是有些特殊情况需要选择另个表作为驱动表,比如有 group by、order by 等「Using filesort」、「Using temporary」时。STRAIGHT_JOIN 来强制连接顺序,在 STRAIGHT_JOIN 左边的表名就是驱动表,右边则是被驱动表。在使用 STRAIGHT_JOIN 有个前提条件是该查询是内连接,也就是 inner join。其他链接不推荐使用 STRAIGHT_JOIN,否则可能造成查询结果不准确。
这个方式有时可能减少 3 倍的时间。
这里只列举了上述优化方案,当然还有其他的优化方式,大家可以去摸索尝试,感谢关注。。