昇思25天学习打卡营第5天|网络构建

        本章主要讲神经网络模型的构建方式,mindspore.nn提供常见神经网络层的实现方法。

定义模型类:

        定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。

import mindspore
from mindspore import nn, ops

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 10, weight_init="normal", bias_init="zeros")
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits
    
model = Network()
print(model)

## 调用模型
X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
# print logits
logits

## Softmax获得预测概率
pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

模型层:

        介绍神经网络模型每层中的构造方式。

## 构造3*28*28随机数据
input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape)
## 实例化Flatten
flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)
## 全连接层
layer1 = nn.Dense(in_channels=28*28, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)
## ReLU层加入非线性激活函数
print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")
## 使用SequentialCell快速构造神经网络模型
seq_modules = nn.SequentialCell(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Dense(20, 10)
)

logits = seq_modules(input_image)
print(logits.shape)
## Softmax函数缩放最后的预测概略
softmax = nn.Softmax(axis=1)
pred_probab = softmax(logits)

 

模型参数:

        网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

print(f"Model structure: {model}\n\n")

for name, param in model.parameters_and_names():
    print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

 

        本章主要还是针对MindSpore中神经网络层的API(mindspore.nn API)调用方法示例,后续需要不断熟悉,掌握这些写法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值