poj1088滑雪问题

#include <stdio.h>  
  
int matrix[100][100];  
int dp[100][100];  
int R;  
int C;  
  
int Max (int a, int b, int c, int d){  
    int max1 = (a > b) ? a : b;  
    int max2 = (c > d) ? c : d;  
    return (max1 > max2) ? max1 : max2;  
}  
  
// dp[i][j] = max(dp[i-1][j], dp[i+1][j], dp[i][j-1], dp[i][j+1]) + 1  
int MaxLength(int i, int j){  
    if (dp[i][j] > 0)  
        return dp[i][j];  
    int a = 0;  
    int b = 0;  
    int c = 0;  
    int d = 0;  
    if (i-1 >= 0 && matrix[i][j] > matrix[i-1][j]){  
        a = MaxLength (i-1, j);  
    }  
    if (i+1 < R && matrix[i][j] > matrix[i+1][j]){  
        b = MaxLength (i+1, j);  
    }  
    if (j-1 >= 0 && matrix[i][j] > matrix[i][j-1]){  
        c = MaxLength (i, j-1);  
    }  
    if (j+1 < C && matrix[i][j] > matrix[i][j+1]){  
        d = MaxLength (i, j+1);  
    }  
    return dp[i][j] = Max (a, b, c, d) + 1;  
}  
  
int main(void){  
    int i, j;  
    int max;  
  
    while (scanf ("%d%d", &R, &C) != EOF){  
        for (i=0; i<R; ++i)  
            for (j=0; j<C; ++j){  
                scanf ("%d", &matrix[i][j]);  
                dp[i][j] = 0;  
            }  
        for (i=0; i<R; ++i){  
            for (j=0; j<C; ++j){  
                MaxLength (i, j);  
            }  
        }  
        max = 0;  
        for (i=0; i<R; ++i){  
            for (j=0; j<C; ++j){  
                if (max < dp[i][j]){  
                    max = dp[i][j];  
                }  
            }  
        }  
        printf ("%d\n", max);  
    }  
  
    return 0;  
} 
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值