题目链接:Dining
入手的最大流第一题。
题目的意思是说,每个牛都有喜欢的饮料和食物,怎样分配才能最大限度地满足牛的需求。
如果去掉一个饮料,那么就是每个牛都有喜欢的食物,怎样最大限度地分配。这就是最大二分图匹配问题,用最大流做就是,从源点向每头牛连一条容量为1的边,然后每头牛向喜欢的食物连一条容量为1的边,最后由食物向汇点连一条容量为1的边,最后求最大流即可解决问题。
但是这道题多了饮料,我们可以模仿上面,源点向食物连边,食物向牛连边,牛向饮料连边,饮料向汇点连边,再求最大流。但是,这样做出来的答案是不对的,因为题目要求的是一头牛只可以拥有一种食物和饮料,如果按照那样做,就有可能一头牛拥有多种食物和饮料。所以,我们将牛进行拆点,然后这两点间连一条容量为1的边,表示牛只能选择一种食物和饮料,然后跑最大流就行了。
代码如下:
/*************************************************************************
> File Name: main.cpp
> Author:Eagles
> Mail:None
> Created Time: 2018年09月26日 星期三 10时58分40秒
> Description:POJ3281
************************************************************************/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
#define N 1000
struct node
{
int to;
int nex;
int val;
}E[N*N];
int head[N],lev[N];
int cnt,n,f,d;
int S,T;
void addEdge(int a, int b, int c)
{
E[cnt].to=b;
E[cnt].val=c;
E[cnt].nex=head[a];
head[a]=cnt++;
E[cnt].to=a;
E[cnt].val=0;
E[cnt].nex=head[b];
head[b]=cnt++;
}
void init()//[0,f+d]这个区间的点是食物和饮料,之后的每队点代表一头牛
{
memset(head,-1,sizeof(head));
cnt=0;
S=0;
T=2*n+f+d+1;
for (int i=1; i<=f; i++)
addEdge(S,i,1);
for (int i=f+1; i<=f+d; i++)
addEdge(i,T,1);
for (int i=1; i<=n; i++)
{
int le=f+d+i*2-1;
int ri=le+1;
int num1, num2;
scanf("%d%d",&num1,&num2);
while (num1--)
{
int a;
scanf("%d",&a);
addEdge(a,le,1);
}
while (num2--)
{
int b;
scanf("%d",&b);
addEdge(ri,f+b,1);
}
addEdge(le,ri,1);
}
}
bool bfs()
{
memset(lev,0,sizeof(lev));
queue<int>q;
q.push(S);
lev[S]=1;
while (!q.empty())
{
int u=q.front();
q.pop();
for (int i=head[u]; i!=-1; i=E[i].nex)
{
int v=E[i].to;
if (E[i].val>0&&lev[v]==0)
{
lev[v]=lev[u]+1;
q.push(v);
if (v == T)
return true;
}
}
}
return false;
}
int dfs(int u, int f)
{
if (u==T)
return f;
int tag=0;
for (int i=head[u]; i!=-1; i=E[i].nex)
{
int v=E[i].to;
if (E[i].val>0 && lev[v]==lev[u]+1)
{
int d=dfs(v,min(f-tag,E[i].val));
E[i].val-=d;
E[i^1].val+=d;
tag+=d;
if (tag==f)
return f;
}
}
return tag;
}
int Dinic()
{
int ans=0;
int inf=1000000;
while (bfs())
{
ans+=dfs(S,inf);
}
return ans;
}
int main()
{
while (~scanf("%d%d%d",&n,&f,&d))
{
init();
printf("%d\n",Dinic());
}
return 0;
}
拆点----一个有用的技巧。