MIT ML 听课笔记(一)

machine Learning : 

  • supervised learning ; 
  • unsupervised Learning


supervised learning: 对于数据集中的每个数据,都有相应的正确答案。算法就是基于这些来做出预测。



  1.regression problem (predict continuous valued output):


Regression is a ML task where T has a real-valued outcome on some continuous sub-space 


  2.classification problem (预测是否为某种离散值)


Classification is a ML task where T has a discrete set of outcomes

    



m=number of training examples

xs= input variable/features

ys=output variable/target variable


     (x,y) one training example


:=means assignment.  


a:=b means take the value in b and use it overwrite whatever value is a . This means set a to be equal to the value of b, which is assignment.



运用梯度下降的两个技巧:


  1. feature scaling :特征缩放 (讲特征范围控制在-3—3


mean normalization replace xi with xi-ui to make features have approximately zero mean


x <-  x-u/s

u: average value of x in training set

s: range(max-min)

不需要太精确,只是为了让梯度下降法更快



2.

如何确保梯度下降算法work correctly

for sufficiently small alpha, j-theta should decrease on every iteration.  cost一直在减小)

所以如果j(theta) 变大或者没有一直变小,往往是learning rate太大了,需要变小。

如果alpha过于小,那就会收敛的很慢。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值