💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
1. 最小包络熵(Minimum Envelope Entropy)
6. 包络谱峰值因子(Envelope Spectrum Peak Factor)
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一、金豺优化算法(GJO)与VMD参数优化原理
1. GJO算法原理
金豺优化算法(Golden Jackal Optimization, GJO)是一种基于金豺群体狩猎行为的元启发式算法,由Nitish Chopra和Muhammad Mohsin Ansari于2022年提出。其核心分为三个阶段:
- 搜索阶段:模拟金豺在环境中随机搜索猎物的行为,通过全局探索避免局部最优。
- 包围阶段:当猎物被发现后,金豺通过合作缩小包围圈,增强局部搜索能力。
- 攻击阶段:快速收敛到最优解,完成参数寻优。
该算法具有快速收敛、全局寻优能力强等特点,适用于复杂非线性优化问题。
2. VMD参数优化需求
变分模态分解(VMD)是一种非递归信号分解方法,但其性能高度依赖两个关键参数:
- 分解层数(K) :过小导致模态混叠,过大导致过分解。
- 惩罚因子(α) :影响频带分割的平滑性。
传统手动调参依赖经验,效率低下。GJO通过自适应优化这两个参数,显著提升VMD的分解效果。
二、六种适应度函数的定义与应用场景
1. 最小包络熵(Minimum Envelope Entropy)
-
定义:通过希尔伯特解调包络序列的熵值衡量信号复杂度,计算公式为:
其中,a(j)为模态分量的包络幅值。
-
应用场景:适用于机械故障诊断(如轴承损伤),可有效抑制噪声干扰,提取周期性冲击特征。
2. 样本熵(Sample Entropy)
-
定义:评估信号中新模式出现的概率,公式为:
其中,m为嵌入维度,r为容限,Am和BmBm分别为匹配m+1和mm点序列的概率。
-
应用场景:生理信号(如心率变异性、脑电信号)复杂度分析,用于疾病诊断与情绪识别。
3. 信息熵(Information Entropy)
-
定义:量化信号的信息不确定性,公式为:
其中,P(xi)为信号状态的概率分布。
-
应用场景:特征选择与数据压缩,适用于高维信号(如高光谱图像)降维与分类。
4. 排列熵(Permutation Entropy)
-
定义:基于序列排序模式的熵值,反映信号动力学突变行为,公式为:
其中,pl为不同排列模式的出现概率。
-
应用场景:机械振动信号(如齿轮故障)的非线性特征提取,以及心电信号异常检测。
5. 排列熵/互信息熵比值(PE/MI Ratio)
-
定义:复合指标结合排列熵(HpHp)与互信息熵(MIMI),公式为:
该比值越小,表明信号噪声低且特征信息丰富。
-
应用场景:复杂时间序列(如GNSS坐标数据、能源负荷)的降噪与特征保留,平衡噪声抑制与信息完整性。
6. 包络谱峰值因子(Envelope Spectrum Peak Factor)
-
定义:衡量包络谱中周期性冲击成分的显著性,公式为:
其中,En为包络谱幅值。
-
应用场景:滚动轴承与齿轮箱的早期故障诊断,增强周期性冲击特征的提取效果。
三、GJO-VMD中多适应度函数切换机制
1. 设计方法
- 模块化函数接口:将六种适应度函数封装为独立模块,通过参数标志位(如
switch-case
结构)实现动态调用。 - 自适应权重调整:根据信号特性(如噪声水平、周期性)自动选择最优函数。例如,高噪声场景优先使用包络熵或PE/MI比值。
- 用户自定义配置:提供可视化界面或配置文件,允许用户手动切换适应度函数,满足不同研究需求。
2. 实现优势
- 灵活性:支持六种函数任意组合,适应复杂多变的工程场景。
- 效率提升:GJO的快速收敛特性与多线程计算结合,降低优化时间。
- 可扩展性:新增适应度函数无需重构核心算法,仅需扩展函数库。
四、综合应用与性能对比
1. 应用实例
- 机械故障诊断:GJO-VMD以包络谱峰值因子为适应度函数,在轴承故障数据中识别出内圈损伤特征频率,信噪比提升22 dB。
- 能源负荷预测:使用排列熵/互信息熵比值优化VMD分解,结合Stacking集成模型,电、冷、热负荷预测误差分别降至0.903%、2.713%、1.616%。
- 生理信号分析:以样本熵优化脑电信号分解,情绪识别准确率提高15%。
2. 优势总结
- 精度优势:相比传统方法(如EEMD、ICEEMDAN),分解误差降低30%\sim50%。
- 鲁棒性:复合指标(如PE/MI)在高噪声环境下仍保持稳定性能。
- 通用性:六种函数覆盖信号处理主流需求,适用于机械、医疗、能源等多领域。
五、未来研究方向
- 动态适应度函数:根据信号特性实时调整函数权重,提升自适应能力。
- 混合优化策略:结合深度学习(如LSTM)与GJO,进一步优化参数搜索效率。
- 跨学科应用扩展:探索在金融时间序列、气象数据分析中的潜在价值。
通过上述设计,GJO-VMD在多适应度函数切换中展现出强大的灵活性与实用性,为信号处理领域提供了高效的解决方案。
📚2 运行结果
2.1 .最小包络熵作为适应度函数
2.2 最小样本熵作为适应度函数
2.3 最小信息熵作为适应度函数
2.4 最小排列熵作为适应度函数
2.5 复合指标作为适应度函数
2.6 包络谱峰值因子作为适应度函数
部分代码:
%% 最小信息熵的适应度函数
function [ff] = infoEntropyCost(c,data)
X = data;
alpha = fix(c(1)); % moderate bandwidth constraint:适度的带宽约束/惩罚因子
K = fix(c(2)); % modes:分解的模态数
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = vmd(X,'PenaltyFactor', alpha,'NumIMF',K);
u=u';
for i = 1:K
fitness(i,:) = entropy(u(i,:)); %这里直接调用信息熵函数
end
[ff] = min(fitness);
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]纪京生,周莉,马向阳.VMD结合小波包信息熵和GJO-SVM的电机轴承故障诊断[J].现代制造工程, 2024(2):128-136.
[2]邵博琰,吉卫喜.改进金豺算法求解多目标柔性车间低碳调度问题[J].轻工机械, 2024, 42(4):95-104.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取