畅通工程续
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 51342 Accepted Submission(s): 19131
点击打开打开链接
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1Dijkstra算法模板题目。
#include<iostream> #include<cstdio> #include<queue> #include<vector> #include<cstring> #include<string> #include<stack> #include<map> #include<set> #define INF 0x3f3f3f3f #define MAXN 202 using namespace std; int N,M,S,T; int Map[MAXN][MAXN]; void InitMap() { for(int i = 0; i < N; i++) { Map[i][i] = 0; for(int j = i+1; j < N; j++) Map[i][j] = Map[j][i] = INF; } } void Dijkstra() { int dis[MAXN]; int vis[MAXN]; int u; int mindis; for(int i = 0; i < N; i++) { vis[i] = 0; dis[i] = Map[S][i]; } vis[S] = 1; for(int i = 0; i < N; i++) { u = -1; mindis = INF; for(int j = 0; j < N; j++) { if(vis[j]==0 && dis[j]<mindis) { u = j; mindis = dis[j]; } } if(u == -1) break; vis[u] = 1; for(int j = 0; j < N; j++) { if(vis[j]==0) { if(dis[u]+Map[u][j]<dis[j]) dis[j] = dis[u]+Map[u][j]; } } } if(dis[T]<INF) printf("%d\n",dis[T]); else printf("-1\n"); } int main() { while(~scanf("%d%d",&N,&M)) { InitMap(); int a,b; int X; for(int i = 0; i < M; i++) { scanf("%d%d%d",&a,&b,&X); if(X < Map[a][b]) Map[a][b] = Map[b][a] = X; } scanf("%d%d",&S,&T); if(S == T) printf("0\n"); else Dijkstra(); } return 0; }