题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1565
/**
题目来源:BZOJ 1565: [NOI2009]植物大战僵尸
题目意思:给出N*M的矩阵,矩阵中每一个方格都有一棵植物,同时每个植物
都有一个score值(可以是正,也可以是负)先输入N,M,然后是N*M行数据,
每一行数据第一个数是对应格子的score值,然后是一个数w,代表该植物可以保护
w个位置,然后给出这w位置的坐标,代表该位置植物可以保护这些位置的植物,但是
每棵植物无法保护自己所在的位置,僵尸是从矩阵右侧出发的,有无数多个,僵尸一
但进入植物的攻击区域后,还没发动攻击就会被植物立即消灭,而且僵尸只能水平方向
前进,僵尸欲想往更左侧走,就要先除掉右侧植物,所以右侧的植物对左侧植物有保护
作用。僵尸除掉一颗植物,就可以获得其score,求僵尸可以获得最大的score值。
解题思路:最大权闭合子图,每个方格看成一个节点,对应一个编号,如果x对y
有保护作用,就连一条x->y的边,这个题目要去环,其实最大权闭合子图问题
应该是不会怕环的,但是这个题目僵尸已进入受保护的区域就马上会被消灭,
这些区域根本就是没法访问的,如果A可以保护B,B又保护C,C又保护A,那么
A,B,C无法被消灭,只有最终保护伞(保护伞就是保护该点的节点数)为0的这些
点可能被僵尸攻击。所以这个题目要么先用拓扑排序或tarjan去除环,然后在建立
网络流模型,用最大权闭合子图的方法求解一下即可。
注意:原图中我们是x对y有保护作用,则从x引一条到y的边,然而建立网络流需要
用的图时,如果x对y是保护作用,则要建立y到x且权值为无穷大的边,因为如果y
要是想除去,必须先除去x,也就是说若y属于S割,由于y到x的边为无穷大在,无穷大的
边无法被抵消,这就保证了x也比属于S割,只要注意好这一点,然后正权值点与S建
边,负权值的点向T建边,求图的最小割,所有正权值和-负点的权值和就是答案。
*/
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
using namespace std;
int N,M,S,T,sum,maxFlow; ///N行M列的矩阵
const int maxn = 1000;
const int INF = 0x3f3f3f3f;
const int maxm = 1000000;
int score[maxn],vis[maxn],level[maxn];
int head1[maxn],cnt1,inDegree[maxn];
int head2[maxn],cnt2,cur[maxn];
struct Edge1 {
int to;
int nex;
}edge1[maxm<<1];
struct Edge2 {
int to;
int cap;
int nex;
}edge2[maxm<<1];
void addEdge1(int u,int v) {
edge1[cnt1].to = v;
edge1[cnt1].nex = head1[u];
head1[u] = cnt1++;
inDegree[v]++;
}
void addEdge2(int u,int v,int cap) {
edge2[cnt2].to = v;
edge2[cnt2].cap = cap;
edge2[cnt2].nex = head2[u];
head2[u] = cnt2++;
edge2[cnt2].to = u;
edge2[cnt2].cap = 0;
edge2[cnt2].nex = head2[v];
head2[v] = cnt2++;
}
void input() {
memset(head1,-1,sizeof(head1));
memset(inDegree,0,sizeof(inDegree));
cnt1 = 0;
int s,t,x,y,u,v;
for(int i = 0; i < N; i++) {
for(int j = 0; j < M; j++) {
scanf("%d%d",&s,&t);
u = i*M+j+1;
score[u] = s;
for(int k = 1; k <= t; k++) {
scanf("%d%d",&x,&y);
v = x*M+y+1;
addEdge1(u,v);
}
if(j != M-1)
addEdge1(u+1,u);
}
}
}
void delCircle(int x) {
vis[x] = 1;
for(int i = head1[x]; i!=-1; i = edge1[i].nex) {
int v = edge1[i].to;
if(vis[v]==0) {
delCircle(v);
}
}
}
void topSort() {
memset(vis,0,sizeof(vis));
queue<int>qu;
for(int i = 1; i <= N*M; i++) {
if(inDegree[i] == 0) {
qu.push(i);
} else {
vis[i] = 1;
}
}
while(!qu.empty()) {
int u = qu.front();
qu.pop();
for(int i = head1[u]; i!=-1; i =edge1[i].nex) {
int v = edge1[i].to;
inDegree[v]--;
if(inDegree[v]==0) {
vis[v] = 0;
qu.push(v);
}
}
}
for(int i = 1; i <= N*M; i++) {
if(vis[i]==1) {
delCircle(i);
}
}
}
void build() {
memset(head2,-1,sizeof(head2));
cnt2 = 0;
sum = 0;
S = 0;
T = N*M+1;
for(int i = 1; i <= N*M; i++) {
if(vis[i]==0) {
if(score[i]>=0) {
sum += score[i];
addEdge2(S,i,score[i]);
} else {
addEdge2(i,T,-score[i]);
}
for(int j = head1[i]; j != -1; j = edge1[j].nex) {
int v = edge1[j].to;
if(vis[v]==0) { ///v对i依赖,所以建立v到i的边。
addEdge2(v,i,INF);
}
}
}
}
}
bool bfs() {
memset(level,-1,sizeof(level));
level[S] = 0;
queue<int>qu;
qu.push(S);
while(!qu.empty()) {
int u = qu.front();
qu.pop();
for(int i = head2[u]; i != -1; i = edge2[i].nex) {
int v = edge2[i].to;
if(edge2[i].cap > 0 && level[v] == -1) {
level[v] = level[u] + 1;
qu.push(v);
}
}
}
if(level[T]==-1) return false;
else return true;
}
int dfs(int x,int flow) {
if(x == T)
return flow;
int all=0,temp;
for(int &i = cur[x]; i != -1; i = edge2[i].nex) {
int v = edge2[i].to;
if(edge2[i].cap>0 && level[v]==level[x]+1) {
temp = dfs(v,min(flow-all,edge2[i].cap));
edge2[i].cap -= temp;
edge2[i^1].cap += temp;
all += temp;
if(all == flow) return flow;
}
}
if(all == 0) level[x] = -1;
return all;
}
int dinic() {
maxFlow = 0;
while(bfs()) {
for(int i = S; i <= T; i++) {
cur[i] = head2[i];
}
maxFlow += dfs(S,INF);
}
return maxFlow;
}
int main() {
scanf("%d%d",&N,&M);
input();
topSort();
build();
int ans = sum-dinic();
printf("%d\n",ans);
return 0;
}