问题 1439: [蓝桥杯][历届试题]小朋友排队

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wyxeainn/article/details/79959691

点击查看题目


题目需要不断通过相邻小朋友的交换,使数列变成非递减数列。可知对于某个位置的数,其左侧

比其大的数和它必有一次交换,其右侧比其小的数和它必有一次交换。则它交换的次数是左侧比

它大的数的个数和右侧比它小的数的个数的和。加入和为x,可知其愤怒值为x*(1+x)/2。所以可以

用树状数组求解。


当然题目的意思,很明显就是冒泡排序、归并排序这些交换排序也可以满足的。但是冒泡排序的

时间复杂度大,不能满足题目要求的时间限制,归并排序基于二分,可成功用户求解。

例如:6 7 8 9            0 1 2 3 进行归并。

发现0<6.则6以及6右侧的7 8 9 都比0大,需要与0交换,则0的交换次数+4.

然后1<6.同样6以及6右侧的7 8 9都比1大,需要与1交换。


则我们会发现left[i] > right[j]      则j对应的元素需要加leftLen-i+1。

而对于left[i]<=right[j]   则右侧序列0 - j-1 都比left[i]。则left[i] 的交换次数需要加上0 ~j-1的元素。


树状数组AC代码:

#include <iostream>
#include <stdio.h>
#include <string.h>

using namespace std;

typedef long long ll;
const int maxn = 100005;
const int maxm = 1000005;
int n,h[maxn],cnt[maxm],sum[maxm];
int lowbit(int x) {
    return x&(-x);
}
void deal() {
    memset(sum,0,sizeof(sum));
    memset(cnt,0,sizeof(cnt));
    for(int i = 0; i < n; i++) {
        //h[i] ~ maxm 都大于等于h[i]。
        for(int k = h[i]; k < maxm; k=k+lowbit(k)) {
            cnt[k] += 1;
        }
        int j = 0;
        for(int k = h[i]; k > 0; k=k-lowbit(k)) {
            j += cnt[k];
        }
        sum[i] = i-j+1;  //算元素i左侧有多少大于等于元素i的。
    }
    memset(cnt,0,sizeof(cnt));
    for(int i = n-1; i >= 0; i--) {
        for(int k = h[i]; k < maxm; k=k+lowbit(k)) {
            cnt[k] += 1;
        }
        for(int k = h[i]-1; k > 0; k=k-lowbit(k)) {
            sum[i] += cnt[k];
        }
    }
}
int main() {
    scanf("%d",&n);
    for(int i = 0; i < n; i++) {
        scanf("%d",&h[i]);
        h[i]++;   
        //h[i]可能是0,导致lowbit(0) 一直是0,所以用树状数组一定要注意这点。
    }
    deal();
    ll ans = 0;
    for(int i = 0; i < n; i++) {
        ans += ((ll)sum[i]+1)*(ll)sum[i]/2;
    }
    printf("%lld\n",ans);
    return 0;
}


归并排序解法:

#include <iostream>
#include <stdio.h>
#include <string.h>

using namespace std;

typedef long long ll;
const int maxn = 100005;
int arr[maxn],cnt1[maxn],tmp[maxn],cnt2[maxn];
void mergePass(int L1,int R1,int L2,int R2) {
    int i,j,k;
    i = L1;    //i指向左区间左端点
    j = L2;    //j指向右区间右端点
    k = 0;
    while(i<=R1 && j<=R2) {
        if(arr[i]>arr[j]) {
            cnt2[k] = cnt1[j] + (R1-i+1);
            tmp[k++] = arr[j++];
        }
        else {
            cnt2[k] = cnt1[i] + (j-L2);
            tmp[k++] = arr[i++];
        }
    }
    while(i<=R1) {
        cnt2[k] = cnt1[i] + (R2-L2+1);
        tmp[k++] = arr[i++];
    }
    while(j<=R2) {
        cnt2[k] = cnt1[j];
        tmp[k++] = arr[j++];
    }
    for(int i = L1; i <= R2; i++) {
        arr[i] = tmp[i-L1];
        cnt1[i] = cnt2[i-L1];
    }
}
void mergeSort(int left,int right) {
    if(left<right) {
        int mid = (left+right)/2;
        mergeSort(left,mid);
        mergeSort(mid+1,right);
        mergePass(left,mid,mid+1,right);
    }
}
int main() {
    int n;
    while(~scanf("%d",&n)) {
        for(int i = 0; i < n; i++) {
            scanf("%d",&arr[i]);
        }
        memset(cnt1,0,sizeof(cnt1));
        memset(cnt2,0,sizeof(cnt2));
        mergeSort(0,n-1);
        ll ans = 0;
        for(int i = 0; i < n; i++) {
            ans += ((ll)cnt1[i]+1)*(ll)cnt1[i]/2;
        }
        printf("%lld\n",ans);
    }
    return 0;
}


阅读更多

没有更多推荐了,返回首页