fisher聚类算法

该博客介绍了Fisher聚类算法,虽然原理可参考特定文献,但文中提到的实现方式通过穷举搜索所有可能的分类,依据损失函数确定分类,这种方法在大数据集上效率低下,易导致计算爆炸。提醒读者考虑使用Fisher的优化解法。
摘要由CSDN通过智能技术生成

fisher聚类算法

其原理建议看以下这篇文献,但在解法上这里采用的是比较粗暴的方法,直接搜索所有的可能,之后根据损失函数找出对应的分类情况,弊端比较大,对于样本数大的情况基本爆炸!建议采用fisher的解法。

由于数据集比较不同,以下代码不能直接使用。
在这里插入图片描述

import win32com.client as com
import pandas as pd
import os
from matplotlib import pyplot as plt
import numpy as np
import matplotlib as mpl
import math
from datetime import datetime
import matplotlib.dates as mdates

mpl.rcParams['font.sans-serif'] = ['SimHei']  # 使图像正常显示中文标签
mpl.rcParams['axes.unicode_minus'] = False  # 使图像正常显示负号

temp = []

# 设置横纵坐标的名称以及对应字体格式
font1 = {
    'weight': 'normal',
    'size': 15,
}

font2 = {
    'weight': 'normal',
    'size': 12,

}
################################数据读取################################################
def Num_fileread(dir,file):
    os.chdir(dir)
    tem = pd.read_table(file, encoding='gbk')
    # print(tem)
    # print(tem[12:].reset_index(drop=True))#截取7行以下的内容
    tem = tem[12:].reset_index(drop=True)
    tem.columns = ['DATA']
    tem1 = pd.DataFrame([var.split(';') for var in tem.DATA])
    tem1.columns = ['Measur', 'from', 'to','greenbus', 'total ', 'social','']#分号后面也成一列,所以id是空值
    # # tem1.drop(['id'],axis=1,inplace=True)
    # print(tem1)
    df=tem1
    df.to_excel('data.xls',sheet_name='data')

    #occup.rate
    df1=df.iloc[(df['Measur']=='1').values,[2,3,4,5]]
    return df,df1
    # df2=df.iloc[(df['Measur']=='2').values,[0,1,2,3,4,5,6]]
    # df3=df.iloc[(df['Measur']=='3').values,[0,1,2,3,4,5,6]]
    # df4=df.iloc[(df['Measur']=='4').values,[0,1,2,3,4,5,6]]
    # return df,df1,df2,df3,df4

def picture1():
    fig=plt.figure(1)
    ax1=fig.add_subplot(111)
    d=df.iloc[(df['Measur']=='1').values,[2]].astype(float)
    # print(type(d))

    ax1.plot(d,df.iloc[(df['Measur']=='1').values,[4]].astype(float), 'o-', label='road1_total')
    ax1.plot(df.iloc[(df['Measur'] == '1').values, [2]].astype(float),df.iloc[(df['Measur'] == '1').values, [3]].astype(float), 'o-', label='road1_bus')
    # ax1.plot(df
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值