希尔排序是插入排序的一种。
首先我们来了解一个定理:交换相邻元素的任何排序算法平均时间为O(N^2)。
所以希尔排序通过比较一定间隔的元素来进行工作,各趟距离随算法减小,最后比较相邻元素完成排序。也就是说原来的插入排序是相邻的元素比较,而希尔排序是具有间隔的插入排序,这个间隔就是这个序列。
希尔排序使用增量序列:h1,h2,h3…ht;h1=1。使得每趟排序使数组a[i]<=a[i+hk]。最后一趟使a[i]<=a[i+1]。希尔排序也叫缩减增量排序。
增量序列一个流行的序列是Shell(算法创造人)建议建议的,ht=N/2,向下取整,hk=h(k+1)/2,向下取整,一直取到1为止。例如该数组有10个元素,那么序列为:5,2,1。(不要被上面那个图片误导)
代码
public class ShellSort {
@Test
public void test(){
Integer[] array = new Integer[]{10,54,55,47,50,20,41,33,40,70};
sort(array);
for(int i = 0; i < array.length; i++){
System.out.print(array[i]+" ");
}
System.out.println();
}
public static <T extends Comparable<? super T>> void sort(T[] array){
int length = array.length;
T temp = null;
for(int i = length/2; i >= 1; i /= 2){
for(int x = i; x < length; x++){
for(int y = x - i; y >= 0; y -= i){
if(array[y].compareTo(array[y+i]) > 0){
temp = array[y];
array[y] = array[y+i];
array[y+i] = temp;
}else {
break;
}
}
}
}
}
}
希尔排序最好的时间复杂度为O(N),平均为O(N^3/2),最差为O(N^2)。但这一切取决于增量序列,希尔增量序列的时间复杂度最差为O(N^2),Hibbard序列最差的时间复杂度为O(N^3/2)。适合小规模数据。
Hibbard增量序列:{1, 3, …, 2^k-1}