老太太阿姨收割机秀才被封

博客先探讨网红“秀才”“一笑倾城”吸金及被封杀现象,指出空巢老人感情缺失是网红乱象土壤,提醒网络防骗。还分享了Vue中实现3D地球自动旋转、城市3D分布图,Es6拓展运算符参数解构应用,以及视频号做任务和插入带货链接变现等信息技术内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cc995ea16b0131898305ed643469d9e1.jpeg

ac516d25570f75a48fd40d8f5d0d1407.png

c449e6cef3e8f2a89bdba37d59bfffaa.png

除了他自己和平台官方,恐怕没有人知道详细数字,不过坊间流传着一句话,叫“秀才和一笑倾城一场直播,就可以榨光一个省的老人低保

可见吸金是有多么恐怖

一笑倾城是秀才的“姊妹篇”,秀才专供老太太,一笑倾城专攻老头,两人双剑合璧,天下老人在手。

秀才一夜之间被封,有人形容为“红得稀里糊涂,凉得莫名其妙”,吓得一笑倾城这几天都不敢直播了,生怕落得同样的下场。

其实大可不必,人不可能稀里糊涂走红,也不可能莫名其妙凉凉,一切都是有原因的。关于秀才被封杀,原因有两个。

一是“曾被大妈举报欺诈51万”,这事儿已经有结果了,说是未发现违法犯罪行为,双方自行达成和解;二是税务问题,这一点比较靠谱,但有关部门并没有直接回答,只是说接到了举报

相比被封杀的原因相比,另一个问题,其实更加值得关注

就是空巢老人,在中老年人当中,无论是男性还是女性,普遍存在感情缺失的现象,这种现象才是滋生出“秀才”“一笑倾城”等网红乱象的土壤

现实当中得不到,那就在网上寻求精神安慰

这一代人,年轻时,听从父母媒烁之言,嫁鸡随鸡嫁狗随狗,一般都是先结婚后有感情,他们所生长的环境很多都是没有爱情的,一辈子都在为生存努力

长期的感情缺失,使他们的老年生活极度空虚,这时候突然来了一个主播,让他们第一次尝到了爱情的滋润,自当奋不顾身,飞蛾扑火。

说到底,这些人是可怜、可悲的,如果投其所好的主播们不做伤天害理的事情,倒也无伤大雅。可惜,人在巨大的名利面前,终究是难以把持住的,最终难逃被贪婪反噬的结果

提供一点廉价的情绪价值,就让很多人找不着北,幻想结识真命天子,嫦娥妹妹

一个村里面不怎么受待见的人,一个好吃懒做的二流子,一个游手好闲的软饭油腻男,摇身一变成为了千万人崇拜的网红,这就是网红流量时代的特征,也是时代的悲哀

其实,在抖音,短视频领域里,但凡赚得盆满钵满的,都是一群没什么文化的,但凡通过劳动挣钱,并不可耻,但是去坑蒙拐骗,那就丧失德性,只能说,一个愿打,一个愿挨 一些没钱的,打赏,养着一群有钱的

在互联网世界里,一定要保持清醒,网络上的什么装疯卖傻,都是为了博得流量,现在就已经有为了流量而流量,刻意而为之,编写剧本,让人真假难辨

还记得前几年,武夷山上外婆山采茶叶,外国留学男友遭劈腿的骗局么,整个骗局包装人设,可谓天衣无缝,对于涉世未深的,绝对是拿捏得死死的

任何时候,都要捂紧自己的口袋.以防上当受骗

Vue中实现3D得球自动旋转

2023-09-08

a71d488be79c387c6e58ef0a79861a57.jpeg

Vue中如何实现城市3D分布图

2023-09-07

ed9416fe57348ece0db0de7b2416b2ff.jpeg

Es6中的拓展运算符参数解构在实际项目当中应用

2023-09-06

bb9ab327ae93d5ad98fe86020975c84b.jpeg

视频号如何做视频任务进行变现

2023-09-05

fa047bdc2875397c6d99f3652d406bfc.jpeg

视频号如何插入带货商品链接进行变现

2023-09-04

e3a5ee23b41edae3c824325c6a768d62.jpeg

24001967470f820187d62590da026e09.png

(能绘画,能问答)

f211e6293c26b7120b1f13554cd63d05.png

内容概要:本文详细介绍了利用遗传算法优化BP神经网络的时间序列预测性能的方法。首先指出了传统BP神经网络存在的问题,如初始权重随机导致的收敛慢和预测不准等问题。然后阐述了遗传算法的基本原理及其在优化BP神经网络中的应用步骤,包括种群初始化、适应度评估、选择、交叉和变异等操作。文中通过具体的Python代码展示了如何构建并优化BP神经网络,以及如何使用遗传算法对其进行改进。最终结果显示,经遗传算法优化后的BP神经网络在预测精度上有显著提升,尤其是在处理含有突变点的数据时表现出更强的鲁棒性和更高的准确性。 适用人群:对机器学习有一定了解的研究人员和技术开发者,特别是那些希望深入了解神经网络优化技巧的人。 使用场景及目标:适用于需要进行时间序列预测的任务,如金融市场的股价预测、气象预报等领域。目标是通过引入遗传算法来改善BP神经网络的预测能力,从而获得更加精确可靠的预测结果。 其他说明:虽然遗传算法能够有效提高BP神经网络的预测性能,但在大规模数据集上的计算成本较高。因此,在实际应用中可以根据具体情况调整遗传算法的参数设置,以平衡计算效率与预测精度之间的关系。此外,还可以探索更多先进的优化技术和算法,进一步提升模型的效果。
<think>好的,我现在需要帮用户在Ubuntu系统上安装PyTorch。用户已经提供了一些引用内容,我需要参考这些内容来给出正确的步骤。首先,用户提到他们不想安装Anaconda,直接用pip安装,所以我需要确保步骤中不包含Anaconda的安装部分。 根据引用[2],用户需要先确定CUDA版本,然后去PyTorch官网选择对应的版本。Ubuntu 20.04对应的CUDA版本是11.8,所以可能需要检查用户的CUDA是否安装正确。用户可能需要运行`nvidia-smi`来查看CUDA版本,或者使用`nvcc --version`。如果用户没有安装CUDA,可能需要指导他们先安装,但这个问题可能超出当前范围,用户可能已经安装了CUDA,或者想用CPU版本的PyTorch。 接下来,用户需要安装PyTorch。根据引用[1]和[2],正确的安装命令是从PyTorch官网获取的命令。用户可能需要访问官网选择适合自己环境的选项,比如CUDA 11.8或者CPU,然后复制pip命令。例如,对于CUDA 11.8,命令可能是`pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118`。 另外,用户需要确保已经安装了pip和Python。如果用户没有安装pip,可能需要先安装pip,比如使用`sudo apt install python3-pip`。同时,Python版本需要符合PyTorch的要求,比如Python 3.8及以上。 安装完成后,用户需要验证安装是否正确。根据引用[1],可以运行Python解释器,导入PyTorch并打印版本号。此外,还可以检查CUDA是否可用,即`torch.cuda.is_available()`返回True。 还需要考虑用户可能遇到的问题,比如依赖项缺失,或者安装过程中出现的错误。例如,引用[3]提到使用apt-file搜索opencv.pc,但这里可能不需要,除非安装涉及到其他库。用户如果遇到依赖问题,可能需要安装一些系统库,如libopenblas-dev等。 最后,用户可能需要安装torchvision和torchaudio,这些通常和PyTorch一起安装,但官网的命令已经包含,所以步骤中应该包括这些。 现在需要整理这些步骤,确保逻辑清晰,正确引用提供的资料,并生成相关问题。</think>### Ubuntu 系统安装 PyTorch 详细教程 #### 步骤 1:检查系统环境 1. **确认 CUDA 版本** 若需使用 GPU 版本,运行以下命令查看 CUDA 版本: ```bash nvidia-smi ``` 或使用编译器工具包检查: ```bash nvcc --version ``` *若未安装 CUDA,可选择安装 CPU 版本的 PyTorch*[^2]。 2. **检查 Python 版本** PyTorch 要求 Python 3.8 及以上版本: ```bash python3 --version ``` --- #### 步骤 2:安装依赖工具 1. **更新系统包** ```bash sudo apt update && sudo apt upgrade -y ``` 2. **安装 pip** ```bash sudo apt install python3-pip ``` --- #### 步骤 3:安装 PyTorch 根据 PyTorch 官网的配置生成安装命令: 1. **访问官网生成命令** 打开 [PyTorch 官网](https://pytorch.org/),选择以下选项: - PyTorch Build: Stable - 操作系统: Linux - Package: Pip - CUDA: 根据实际 CUDA 版本选择(如 11.8)或选择 CPU *示例命令(CUDA 11.8):* ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` *CPU 版本示例:* ```bash pip3 install torch torchvision torchaudio ``` 2. **执行安装命令** 复制官网生成的命令到终端运行。 --- #### 步骤 4:验证安装 1. **检查 PyTorch 版本** 启动 Python 解释器: ```python import torch print(torch.__version__) # 输出 PyTorch 版本[^1] ``` 2. **验证 GPU 支持(若适用)** ```python print(torch.cuda.is_available()) # 返回 True 表示 GPU 可用 ``` --- #### 常见问题解决 - **依赖缺失错误**:安装系统级开发库: ```bash sudo apt install libopenblas-dev libjpeg-dev zlib1g-dev ``` - **pip 版本过低**:升级 pip: ```bash pip3 install --upgrade pip ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值