实战篇:如何训练自己的模型(二)

前言:

        上一篇中我们通过官方所给的yolov11n.pt模型和自己的数据集来训练自己的模型,这次我们来学习如何继续训练自己的模型来提高识别精度。

1.上一篇中我们通过通过官方所给的模型训练完以后会生成以下文件,如图:

其中,best.pt 文件是当前训练结束后所生成的“最优模型”,last.pt是用于“继续训练”的模型。

2.打开我们的train.py文件,然后将里面的模型路径换成last.pt文件的路径,如图:
3.再继续训练时我们的数据集也是需要更换的,数据集的格式和之前的一样,只需要更改一下.yaml文件中的路径,如图: 比如我上次的数据集文件夹是“A08”,这次的数据集文件夹呢就叫“A08_1”,这样我们修改路径时方便一点。
4.这样配置完成后我就可以重新运行train.py文件,等它训练完成后会继续生成best.pt和last.pt文件,以此往复就可以不断提高我们的模型精度。

总结:

通过以上方法,我们就可以不断训练我们自己的模型了,训练集的图片数我建议一次标注200~400张;因为这样我们可以一次性标注完不会遗漏和出错,同时这样操作会使训练时间短一点(因为我觉得大多数小伙伴用的应该都是笔记本电脑吧!),这样做的弊端就是我们的训练次数需要多一点来达到我们所需要的识别精度。

注意!!!我们做识别测试时需要引用的是best.pt文件而不是last.pt!!!

        还有就是每次标注时,标注名称顺序需要一致,不然我们每次都需要通过查看classes.txt文件中的顺序来更改.yaml文件中标注名称的顺序!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值