引言
YOLO(You Only Look Once)系列作为目标检测领域的标杆算法,其最新版本YOLOv11在精度和速度上都有了显著提升。本文将手把手教你完成YOLOv11开发环境的完整配置,无论是学术研究还是工业应用,都能快速上手。本文讲得是GPU版本的,当然我也不推荐使用CPU去训练,因为我做的是服创比赛的识别模型,使用3060的GPU去训练的话1200张训练500轮次就需要大概3-5小时,CPU的话就更慢了。因为我开始对于如何去配置开发环境也是走了很多弯路、找了很多资料,就想写一篇博客希望可以帮助到有需要的小伙伴。如果真的帮助到了大家,也希望大家可以点赞支持一下。
一、系统要求
硬件要求
-
GPU:建议NVIDIA GTX 30系列及以上,显存6GB以上(因为本人使用的是3060显卡,显存8GB)
-
内存:建议16GB及以上
-
存储空间:至少100GB可用空间(这里因为储存空间不够的话训练几次后就会报错)
软件要求
-
操作系统:Windows 11(本人使用的,其它操作系统也有教程不过因为我自己是Windows11,所以只介绍这一种)
-
Python版本:3.8或3.9(实测3.8.20 最稳定)
二、基础环境安装
1. Anaconda环境搭建
(1)为什么要安装Anaconda
-
YOLO 通常依赖特定版本的 Python(如 Python 3.8/3.9),而不同项目可能需要不同版本的 Python 或库。
-
Anaconda 允许创建独立的虚拟环境,避免与系统 Python 或其他项目冲突。
(2)Anaconda的安装
软件下载地址:清华镜像源
点击上方的“清华镜像源”,跳转到下载网页,选择这个版本点击下载。
Step1:点击Next
Step2:点击Next
Step3:选择All Users,然后点击Next
Step4:建议选择储存空间大于100G的盘(避免后续报错),然后新建一个名为“Anaconda”的文件夹(或者记住安装路径,待会要用到),选择这个文件夹点击Next
Step5:三个选项全选,然后点击Install
Step6:等待安装
Step7:安装完成后点击Next
Step8:取消这一页的两个选项,点击Next
Step9:在桌面的搜索中输入“Anaconda”查看是否安装成功
Step10:继续配置环境变量,在桌面搜索中输入“环境变量”,然后打开
Step11:点击环境变量
Step12:找到系统变量中的Path,点击编辑
Step13:找到Anaconda的安装路径(就是刚才建立的文件夹),找到下面这4个路径然后粘贴到环境变量中,最后如图二所示
D:\anaconda
D:\anaconda\Scripts
D:\anaconda\Library\bin
D:\anaconda\Library\mingw-w64\bin
Step14:验证是否配置成功,Win+R然后输入cmd在命令提示符中输入conda --version,如果出现如图所示版本号,则证明配置成功!
conda --version
2.Pycharm的安装
Step1:点击下方链接,往下翻选择社区版本,点击下载
Pycharm官网
https://www.jetbrains.com/zh-cn/pycharm/download/?section=windows
Step2:下载完成后打开文件,点击“下一步”
Step3:这里选择自己的安装路径,建议和Anaconda一样建立一个新的文件夹,并且与Anaconda同盘
Step4:全部打勾,然后“下一步”
Step5:点击“安装”
Step6:安装中........
Step7:选择否,点击“完成”
Step8:在桌面双击安装好的Pycharm,点击“下一个”
Step9:点击“我接受”,然后“继续”
Step10:选择“不发送”
Step11:因为我的电脑里还安装了VsCode所以会自动弹出,直接选择跳过
Step12:OK,这样我们就安装好Pycharm了
3.CUDA和cuDNN的安装
(1)查看自己电脑的cuda版本
下载cuda前需要先查看显卡支持的CUDA版本最高是多少,按下win+r键,输入cmd,在打开的页面输入:nvidia-smi ,即可查看。(如图我的是11.6版本)
(2)点击下方CUDA工具下载链接,从中选择自己的版本
CUDA下载链接https://developer.nvidia.com/cuda-toolkit-archive
Step1:例如我的是11.6版本,那么这三个中任选一个都可以
Step2:按下图方式选择,然后点击下载
Step3:打开刚才下载的安装程序,点击“OK”
Step4:选择“同意”
Step5:选择“自定义”,然后“下一步”
Step6:全部打勾,然后“下一步”
Step7:继续“下一步”
Step8:下一步,然后关闭
Step9:查看是否安装成功,Win+R打开命令提示符,然后输入nvcc -V,如果出现如图所示,则证明安装成功
nvcc -V
(3)安装cuDNN
cuDNN下载地址https://developer.nvidia.com/rdp/cudnn-archive
Step1:点击上方链接选择自己版本的cuDNN,例如我的是11.6就选择11.x版本
Step2:下载Windows的压缩包文件(需要登陆!!!!也可以直接选用Step3中的方式下载)
Step3:找到自己的cuDNN版本然后下载(我的是11.6)
Step4:解压下载好的文件
Step5:将里面的文件复制到这个路径中C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6
三 、YOLO源码下载及配置
1.YOLOv11源码下载
YOLOv11源码地址https://github.com/ultralytics/ultralytics
Step1:选择下载zip文件
Step2:解压下载好的YOLO然后在Pycharm中打开
Step3:在Step1打开的源码地址中往下翻找到训练文件,选择YOLO11n
Step4:将下载好的yolo11n.pt文件复制,然后在Pycharm中放到YOLO项目的根目录下
2.在Pycharm中配置自己的YOLO环境
(1)创建解释器
Step1:点击如图所示红框,选择“添加新的解释器”,然后点击“添加本地解释器”
Step2:环境选择“生成新的”,类型是“Conda” ,Python版本选择3.8!!!!,名称自己起,conda的路径在开始我们安装的Anaconda文件夹中,例如我的是
D:\Anaconda\condabin\conda.bat
最后点击确定。
Step3:生成好后右下角就变成了
Step4:在YOLO的根目录下新建一个requirements.txt文件
Step5:将下面的内容粘贴到 requirements.txt文件中
# Base ------------------------------------------------------------------------
gitpython>=3.1.30
matplotlib>=3.3
numpy>=1.23.5
opencv-python>=4.1.1
pillow>=10.3.0
psutil # system resources
PyYAML>=5.3.1
requests>=2.32.2
scipy>=1.4.1
thop>=0.1.1 # FLOPs computation
torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.9.0
tqdm>=4.66.3
ultralytics>=8.2.34 # https://ultralytics.com
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
# Logging ---------------------------------------------------------------------
# tensorboard>=2.4.1
# clearml>=1.2.0
# comet
# Plotting --------------------------------------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
# Export ----------------------------------------------------------------------
# coremltools>=6.0 # CoreML export
# onnx>=1.10.0 # ONNX export
# onnx-simplifier>=0.4.1 # ONNX simplifier
# nvidia-pyindex # TensorRT export
# nvidia-tensorrt # TensorRT export
# scikit-learn<=1.1.2 # CoreML quantization
# tensorflow>=2.4.0,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev>=2023.0 # OpenVINO export
# Deploy ----------------------------------------------------------------------
setuptools>=70.0.0 # Snyk vulnerability fix
# tritonclient[all]~=2.24.0
# Extras ----------------------------------------------------------------------
# ipython # interactive notebook
# mss # screenshots
# albumentations>=1.0.3
# pycocotools>=2.0.6 # COCO mAP
Step6:会显示如下警告,这是因为还没有安装相关的依赖(不急跟着一步一步做,后面会安装)
(2)安装PyTorch
Step1:点击下方链接,进入PyTorch官网
Step2:往下翻,点击“选择之前版本”
Step3:在这个界面中找到和自己CUDA版本相同的链接,比如我的是11.6,就复制这个链接
pip install torch==1.13.0+cu116 torchvision==0.14.0+cu116 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu116
Step4:打开Pycharm,点击终端,选择Command Prompt
Step5:将刚才复制的链接,粘贴到终端中,点击回车,等待下载完成(大约要2GB)
Step6:现在开始下载那些依赖,打开 requirements.txt文件,下面会显示这些问题(如果没有显示可以点击右上角的黄色警告)
Step6:选择最上面的一个警告,然后鼠标右击,再点击“显示快速修复”
Step7:选择“安装软件包”,点击确定,然后Pycharm会帮你自动下载安装这些软件包
Step8:安装完成后会显示“没有任何问题” (!!!!如果有一两个没有安装成功的话也没事,后面我们测试运行的时候会自动在右上角跳出来,然后点击安装即可)
(3) 测试是否配置成功
Step1:在项目的根目录下新建一个test.py文件
Step2:在test.py文件中复制粘贴下面的代码(模型路径和资源路径需要自己修改,方法在代码中已经提到)
import warnings
#from PyQt5.QtCore import showbase
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO(r'D:\YOLOv11_plus\ultralytics-main\yolo11n.pt')#复制自己的yolo11n.pt路径
model.predict(source=r'D:\YOLOv11_plus\ultralytics-main\ultralytics\assets\bus.jpg',#选择自己的图片路径,YOLO项目的ultralytics-main\ultralytics\assets文件夹中有两张测试图片,自己复制路径,粘贴到这里即可
imgsz=640,
project='XSQ/result',#结果保存路径,可自行修改
name='exp',
save=True,
conf=0.2,
iou=0.7,
show=True,
)
Step3:运行test.py文件,出现下图所示结果证明环境配置已完成
总结:
关于YOLOv11的 环境配置到此已经完成,遇到问题可在评论区留言,附上错误日志和系统环境。希望感兴趣的小伙伴可以点赞+收藏支持一下!!!关注作者后续更新更多YOLOv11实战教程哦!