两日算法系列
小一的学习笔记
这个作者很懒,什么都没留下…
展开
-
《两日算法系列》之第五篇:SVM
1. 支持向量机理论支持向量机(Support Vector Machine:SVM)支持向量机的目的是什么?利用训练数据集的间隔最大化找到一个最优分离超平面你可能有两个名词不太懂,间隔?分离超平面?别紧张,没有人刚开始学习SVM的时候就知道这两个东西先来看个例子,现在有一些人的身高和体重数据,将它们绘制成散点图,是这样的:如果现在给你一个未知男女的身高和体重,你能分辨出性别吗?...原创 2020-04-30 23:59:39 · 556 阅读 · 0 评论 -
《两日算法系列》之第四篇:隐马尔可夫模型HMM
1. 定义与假设李雷雷所在城市的天气有三种情况,分别是:晴天、阴天、雨天,而且一年四季的天气就在这三种之间变换。因为近期不便出门,所以李雷雷每天的活动只有看书和打球两种。韩梅梅在国外上学期间,只能通过李雷雷的朋友圈观察他每天都参与了什么活动,而并不知道李雷雷所在城市的天气是什么样的但是通过观察,韩梅梅发现李雷雷所在城市的天气是有一点点规律的,比如:前一天如果是晴天,那么后一天是晴天的概率会比...原创 2020-04-29 23:25:12 · 994 阅读 · 0 评论 -
《两日算法系列》之第三篇:EM聚类
目录1. 聚类算法1.1. 何为聚类1.2. 如何聚类1.3. 评估聚类2. EM原理2.1. 极大似然估计?2.1. 分菜问题?2.2. 模仿分菜?2.3. 模仿的升级!2.4. EM工作原理3. EM聚类硬聚类or软聚类4. 项目实战4.1. 准备工作4.2. 了解数据4.3. 数据探索4.4. 建模4.5. 总结总结1. 聚类算法先来一段西瓜书里面的介绍:在“无监督学习”中,训练样本的...原创 2020-04-26 21:37:26 · 1616 阅读 · 0 评论 -
《两日算法系列》之第二篇:贝叶斯分类
目录1. 必看知识1.1. 参数估计1.1.1. 点估计1.1.2. 区间估计1.2. 似然与概率1.2.1. 概率1.2.2. 似然1.2.3. 表示1.3. 最大似然估计1.4.最大后验估计1.5. 注意2. 贝叶斯原理3. 朴素贝叶斯分类离散数据的分类连续数据的分类4. 实战有关文本分类4.1. 开始实战4.2. 读取数据4.3. 数据分词4.4. 计算每个单词的权重4.5. 建立模型总结...原创 2020-04-23 20:15:28 · 894 阅读 · 0 评论 -
《两日算法系列》之第一篇:线性回归
目录写在前面的话1.线性回归1.1. 从方程说起线性回归一元线性回归多元线性回归2. 线性回归学习策略2.1 损失函数2.2. 代价函数2.3. 目标函数3. 算法求解3.1 最小二乘法3.2. 梯度下降法正则项4. 线性回归的评估指标均方误差MSE均方根误差RMSE平均绝对值误差MAER Squared误差代码实现5. 实战项目写在后面的话写在前面的话刚巧不巧,参加了DataWhale的四...原创 2020-04-21 20:58:37 · 649 阅读 · 0 评论