ICA算法课程
文章平均质量分 76
wzgang123
Thinking more, Less Copy & Paste
展开
-
基于用户的推荐算法
基于用户(项目)协同过滤 输入:训练集用户列表U,训练集电影列表I,评分矩阵R,邻居数目K,测试集用户列表UT输出:给每位用户(共计N位用户)产生一个推荐列表,其中包含M部电影 UCF:Start://构建用户相似度矩阵For user For query Calculate sim(ux,uy) End forEnd for原创 2014-01-05 19:29:17 · 1194 阅读 · 0 评论 -
TF-IDF
TF-IDF主要涉及一下两方面问题:(1)如何构建一个向量来表示文档中 的词项,构建另一个向量来表示查询中的词项.(2)如何来度量任意文档向量和查询向量的相似度倒排索引:文档相似度计算:1、内积(Inner Product)通过内积方法,一个比较长的文档可能会得到一个比较高的分数,仅仅因为文档比较长,因此有更多原创 2014-01-05 20:04:40 · 2249 阅读 · 0 评论 -
Matlab之KNN实现
1. 算法流程1) 通过Matlab产生高斯分布产生两类数据,并标明类别2) 数据初始化:设置K=某个常数(一般为奇数)3) 对于每个测试数据,计算其到两类数据的所有点的距离对于上述求得的距离,选出K个最小的,检测这选出的K个值中属于类别1和类别2的个数If Cnt1>Cnt2 属于类别1;Else原创 2014-01-05 20:13:17 · 2815 阅读 · 0 评论 -
朴素贝叶斯分类器
朴素贝叶斯分类的原理与流程 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,原创 2014-01-05 20:17:43 · 1785 阅读 · 0 评论 -
ANN 人工神经前馈网络BP实现
ANN 人工神经前馈网络实现步骤学习过程:1) 设定网络参数2) 以均匀随机初始化加权值矩阵W,每个神经结点的偏权值向量 。3) 输入一个训练样本的输入向量X与目标输出向量T4) 计算每层网络的输出值向量Y5) 从输出层开始计算误差并反传6) 计算加权值矩阵修正量 W7) 更新加权值矩阵W,原创 2014-01-05 20:22:44 · 1080 阅读 · 0 评论 -
隐马尔可夫模型HMM
隐马尔可夫性:如果一个过程的“将来”仅仅依赖于“现在”,而不依赖于“过去”,则此过程具有马尔科夫性,或称此过程为马尔科夫过程。 X(t+1)=f(X(t))马尔可夫模型:一个系统有N个状态S1, S2, …, SN,随着时间推移,系统从某一状态转移到另一状态。在随机过程中,设qt为时刻t时的状态,系统在时刻t处于状态 S(j )时的概率取决于其在时刻1,原创 2014-01-08 12:48:40 · 2037 阅读 · 1 评论 -
从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
从K近邻算法、距离度量谈到KD树、SIFT+BBF算法前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1、KD树;2、神经网络;3、编程艺术第28章。你看到,blog内的文章与你于别处所见的任何都不同。于是,等啊等,等一台电脑,只好等待..”。得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙转载 2014-03-05 14:19:37 · 1069 阅读 · 1 评论 -
Matlab SVM工具箱的使用
matlab中SVM工具箱的使用方法1 、下载SVM工具箱:http://see.xidian.edu.cn/faculty/chzheng/bishe/indexfiles/indexl.htm2、安装到matlab文件夹中1) 将下载的SVM工具箱的文件夹放在\matlab71\toolbox\下2) 打开matlab->File->Set Path中添原创 2014-04-18 15:53:49 · 2451 阅读 · 0 评论 -
KNN之KD树实现
KNN之KD树 KNN是K-Nearest-Neighbors 的简称,由Cover和Hart于1968年提出,是一种基本分类与回归方法。这里主要讨论分类问题中的k近邻法。一般分类方法:•积极学习法 (决策树归纳):先根据训练集构造出分类模型,根据分类模型对测试集分类。•消极学习法 (基于实例的学习法):推迟建模,当给定训练元组时,简单地存储训练数据(或稍加原创 2014-03-05 14:32:16 · 5654 阅读 · 2 评论