一、特殊的数字
问题描述
153是一个非常特殊的数,它等于它的每位数字的立方和,即153=1*1*1+5*5*5+3*3*3。编程求所有满足这种条件的三位十进制数。
输出格式
按从小到大的顺序输出满足条件的三位十进制数,每个数占一行。
#include <stdio.h>
int main()
{
int n;
int a;
int b;
int c;
int d;
int e;
int f;
int p = 10001;
int q = 100001;
scanf("%d",&n);
while(p < 100000)
{
a = p / 10000;
b = p % 10000 / 1000;
c = p % 1000 / 100;
d = p % 100 / 10;
e = p % 10;
if(a + b + c + d + e == n && a == e && b == d)
{
printf("%d\n",p);
}
p++;
}
while(q < 1000000)
{
a = q / 100000;
b = q % 100000 / 10000;
c = q % 10000 / 1000;
d = q % 1000 / 100;
e = q % 100 / 10;
f = q % 10;
if(a + b + c + d + e + f == n && a == f && b == e && c == d)
{
printf("%d\n",q);
}
q++;
}
return 0;
}
二、杨辉三角形
问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。
它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。
下面给出了杨辉三角形的前4行:
1
1 1
1 2 1
1 3 3 1
给出n,输出它的前n行。
输入格式
输入包含一个数n。
输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。
#include <stdio.h>
int main()
{
int i;
int j;
int n;
int a[35][35];
scanf("%d",&n);
if(n == 1)
{
a[0][0] = 1;
}
else
{
for(i = 0; i < n; i++)
{
for(j = 0; j < i+1; j++)
{
if(j == 0)
{
a[i][j] = 1;
}
else if(i == j)
{
a[i][j] = 1;
}
else
{
a[i][j] = a[i-1][j-1] + a[i-1][j];
}
printf("%d ",a[i][j]);
}
printf("\n");
}
}
return 0;
}