[蓝桥杯]特殊的数字+杨辉三角形

一、特殊的数字

问题描述
  153是一个非常特殊的数,它等于它的每位数字的立方和,即153=1*1*1+5*5*5+3*3*3。编程求所有满足这种条件的三位十进制数。
输出格式
  按从小到大的顺序输出满足条件的三位十进制数,每个数占一行。
#include <stdio.h>

int main()
{
	int n;
	int a;
	int b;
	int c;
	int d;
	int e;
	int f;
	
    int p = 10001;
    int q = 100001;
	
	scanf("%d",&n);
	
	while(p < 100000)
	{
	     a = p / 10000;
		 b = p % 10000 / 1000;
		 c = p % 1000 / 100;
		 d = p % 100 / 10;
		 e = p % 10;
		 
		 if(a + b + c + d + e == n && a == e && b == d)
		 {
		 	printf("%d\n",p);
		 }
		 
		 p++;	 	
	}
	
	while(q < 1000000)
	{
		a = q / 100000;
		b = q % 100000 / 10000;
		c = q % 10000 / 1000;
		d = q % 1000 / 100;
		e = q % 100 / 10;
		f = q % 10;
		
		if(a + b + c + d + e + f == n && a == f && b == e && c == d)
		{
			printf("%d\n",q);
		}
		
		q++;
	}
	
	return 0;
}


二、杨辉三角形

问题描述

杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。

  

它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。

  

下面给出了杨辉三角形的前4行:

  

   1

  

  1 1

  

 1 2 1

  

1 3 3 1

  

给出n,输出它的前n行。

输入格式

输入包含一个数n。

输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。


#include <stdio.h>

int main()
{
	int i;
	int j;
	int n;
	int a[35][35];
	
	scanf("%d",&n);
	
	if(n == 1)
	{
		a[0][0] = 1;
	}
	else
	{
		for(i = 0; i < n; i++)
		{
			for(j = 0; j < i+1; j++)
			{
				if(j == 0)
				{
					a[i][j] = 1;
				}
				else if(i == j)
				{
					a[i][j] = 1;
				}
				else
				{
					a[i][j] = a[i-1][j-1] + a[i-1][j];
				}
				printf("%d ",a[i][j]);
			}
			printf("\n");
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值