给定初始节点,求解从该初始节点出发到达其他节点的最短路径
#include<stdio.h>
//利用邻接表法求解单源点最短路径
#include<iostream>
using namespace std;
int n,m,i;
//u,v和w的数组大小要根据实际情况来设置,要比边数m大1
int u[100],v[100],w[100];
//first和next的数组大小要根据实际情况来设置,firs数组大小要比顶点数n的最大值大1
//next数组要比边数m大1
int first[100],next[100];
int book[100];
//一条边只有一个起始点
int inf=99999999; //定义无穷大
int main()
{
scanf("%d %d",&n,&m);
//初始化first数组小标1~n的值为-1,表示1~n的顶点暂时都没有边
for(i=1;i<=n;i++)
first[i]=-1;
for(i=1;i<=m;i++)
{
scanf("%d %d %d",&u[i],&v[i],&w[i]); //读入每一条边
//更新
next[i]=first[u[i]]; //更新以u[i]为起点的边,保存原来的边
first[u[i]]=i; //更新当前边
}
printf("\n");
int distance[n+1];
distance[1]=0;
book[1]=1;
for(i=2;i<=n;i++)
distance[i]=inf;
//更新从1到各个顶点的位置
int t=first[1];
while(t!=-1)
{
distance[v[t]]=w[t];
t=next[t];
}
for(i=1;i<=n-1;i++)
{
int min=inf;
int u=0;
for(int j=1;j<=n;j++)
{
if(book[j]==0&&min>distance[j])
{
min=distance[j];
u=j;
}
}
book[u]=1;
t=first[u];
while(t!=-1)
{
if(w[t]<inf)
{
if((w[t]+distance[u])<distance[v[t]])
distance[v[t]]=w[t]+distance[u];
}
t=next[t];
}
}
cout<<"最短路径为:";
for(i=1;i<=n;i++)
{
cout<<distance[i]<<" ";
}
return 0;
}
/*
4 5
1 4 9
2 4 6
1 2 5
4 3 8
1 3 7
*/
</pre><pre code_snippet_id="1856926" snippet_file_name="blog_20160829_1_9627302" name="code" class="cpp">
#include<stdio.h>
//迪杰斯特拉算法求解单源点最短路径问题
int main()
{
int e[10][10],dis[10],book[10],i,j,n,m,t1,t2,t3,u,v,min;
int inf=99999999; //将其看做正无穷
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m);
//初始化
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
if(i==j)
e[i][j]=0;
else
e[i][j]=inf;
}
//读入边
for(i=1;i<=m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
}
//初始化dis数组,这里是1号顶点到其余各个顶点的初始路径
for(i=1;i<=n;i++)
{
dis[i]=e[1][i];
//printf("%d ",dis[i]);
}
//book数组初始化
for(i=1;i<=n;i++)
book[i]=0;
book[1]=1; //标记1号节点到该节点的最短路径是否已经找到
//Dijkstra算法核心语句
for(i=1;i<=n-1;i++)
{
//找到离1号顶点最近的顶点
min=inf;
for(j=1;j<=n;j++)
{
if(book[j]==0&&dis[j]<min)
{
min=dis[j];
u=j;
}
}
book[u]=1;
for(v=1;v<=n;v++)
{
//以当前最短路径节点开始更新
if(e[u][v]<inf)
{
if(dis[v]>dis[u]+e[u][v])
dis[v]=dis[u]+e[u][v];
}
}
}
for(i=1;i<=n;i++)
printf("%d ",dis[i]);
getchar();
return 0;
}
/*
6 9
1 2 1
1 3 12
2 3 9
2 4 3
3 5 5
4 3 4
4 5 13
4 6 15
5 6 4
*/