图的最短路径(三)-单源点最短路径(Dijkstra算法)

25 篇文章 0 订阅

给定初始节点,求解从该初始节点出发到达其他节点的最短路径

#include<stdio.h>
//利用邻接表法求解单源点最短路径
#include<iostream>
using namespace std;
int n,m,i;
//u,v和w的数组大小要根据实际情况来设置,要比边数m大1
int u[100],v[100],w[100];
//first和next的数组大小要根据实际情况来设置,firs数组大小要比顶点数n的最大值大1
//next数组要比边数m大1
int first[100],next[100];
int book[100];
//一条边只有一个起始点
int inf=99999999;      //定义无穷大
int main()
{
    scanf("%d %d",&n,&m);
    //初始化first数组小标1~n的值为-1,表示1~n的顶点暂时都没有边
    for(i=1;i<=n;i++)
        first[i]=-1;
    for(i=1;i<=m;i++)
    {
        scanf("%d %d %d",&u[i],&v[i],&w[i]);   //读入每一条边
        //更新
        next[i]=first[u[i]];   //更新以u[i]为起点的边,保存原来的边
        first[u[i]]=i;            //更新当前边
    }
    printf("\n");
    int distance[n+1];
    distance[1]=0;
    book[1]=1;
    for(i=2;i<=n;i++)
        distance[i]=inf;
    //更新从1到各个顶点的位置
    int t=first[1];
    while(t!=-1)
    {
        distance[v[t]]=w[t];
        t=next[t];
    }
    for(i=1;i<=n-1;i++)
    {
        int min=inf;
        int u=0;
        for(int j=1;j<=n;j++)
        {
            if(book[j]==0&&min>distance[j])
            {
                min=distance[j];
                u=j;
            }
        }
        book[u]=1;
        t=first[u];
        while(t!=-1)
        {
            if(w[t]<inf)
            {
                if((w[t]+distance[u])<distance[v[t]])
                    distance[v[t]]=w[t]+distance[u];
            }
            t=next[t];
        }
    }
    cout<<"最短路径为:";
    for(i=1;i<=n;i++)
    {
        cout<<distance[i]<<" ";
    }
    return 0;
}
/*
4 5
1 4 9
2 4 6
1 2 5
4 3 8
1 3 7
*/
</pre><pre code_snippet_id="1856926" snippet_file_name="blog_20160829_1_9627302" name="code" class="cpp">

#include<stdio.h>
//迪杰斯特拉算法求解单源点最短路径问题
int main()
{
    int e[10][10],dis[10],book[10],i,j,n,m,t1,t2,t3,u,v,min;
    int inf=99999999;       //将其看做正无穷
    //读入n和m,n表示顶点个数,m表示边的条数
    scanf("%d %d",&n,&m);

    //初始化
    for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
    {
        if(i==j)
            e[i][j]=0;
        else
            e[i][j]=inf;
    }
    //读入边
    for(i=1;i<=m;i++)
    {
        scanf("%d %d %d",&t1,&t2,&t3);
        e[t1][t2]=t3;
    }
    //初始化dis数组,这里是1号顶点到其余各个顶点的初始路径
    for(i=1;i<=n;i++)
    {
        dis[i]=e[1][i];
        //printf("%d ",dis[i]);
    }

    //book数组初始化
    for(i=1;i<=n;i++)
        book[i]=0;
    book[1]=1;    //标记1号节点到该节点的最短路径是否已经找到

    //Dijkstra算法核心语句
    for(i=1;i<=n-1;i++)
    {
        //找到离1号顶点最近的顶点
        min=inf;
        for(j=1;j<=n;j++)
        {
            if(book[j]==0&&dis[j]<min)
            {
                min=dis[j];
                u=j;
            }
        }
        book[u]=1;
        for(v=1;v<=n;v++)
        {
            //以当前最短路径节点开始更新
            if(e[u][v]<inf)
            {
                    if(dis[v]>dis[u]+e[u][v])
                        dis[v]=dis[u]+e[u][v];
            }
        }
    }
    for(i=1;i<=n;i++)
        printf("%d ",dis[i]);
    getchar();
    return 0;
}
/*
6 9
1 2 1
1 3 12
2 3 9
2 4 3
3 5 5
4 3 4
4 5 13
4 6 15
5 6 4
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值