多线程编程:并发加/减操作优化, LongAdder原理,与AtomicLong比较

本文通过测试展示了在多线程环境下,LongAdder相对于AtomicLong在并发加/减操作上的显著性能优势。测试结果显示,LongAdder的执行速度大约是AtomicLong的一个量级。接着,文章深入探讨了LongAdder的工作原理,指出其利用分散更新避免了竞争,从而提高效率。最后,对LongAdder的源码进行了分析,揭示了其内部的结构和操作机制。
摘要由CSDN通过智能技术生成


多线程修改同一个整数变量的值时, 可以使用 java的原子类 AtomicLong等. 但通过分析 ConcurrentHashMap, 发现还有一种通过 空间时间的优化措施 java.util.concurrent.atomic.LongAdder

先上结论

结论

32线程百万次自增操作 耗时
AtomicLong 626毫秒
LongAdder 83毫秒

测试过程

以下是AtomicLongLongAdder运行测试代码 (32个线程, 每个线程执行100万次自增操作)
AtomicLong的测试过程

public static void atomicLong() throws Throwable {
   
        final int threadCount = 32;
        final AtomicLong longValue = new AtomicLong();
        Thread[] threads = new Thread[threadCount];
        for(int i=0; i<threadCount; i++){
   
            threads[i] = new Thread(new Runnable() {
   
                @Override
                public void run() {
   
                    for(int i=0; i<100*10000; i++){
   
                        longValue.incrementAndGet();
                    }
                }
            });
        }
        long time = System.nanoTime();
        for(int i=0; i<threadCount; i++){
   
            threads[i].start();
        }
        for(int i=0; i<threadCount; i++){
   
            threads[i].join();
        }
        logger.info("value: {}, time: {}", longValue.get(), System.nanoTime() - time);
    }

多次执行结果
625396610
626169232
611343737
614837069
633110850
606656120

LongAdder的测试过程

    public static void longAdder() throws Throwable {
   
        final int threadCount = 32;
        final LongAdder longAdder = new LongAdder();
        Thread[] threads = new Thread[threadCount];
        for(int i=0; i<threadCount; i++){
   
            threads[i] = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值