【Python】ImportError: cannot import name ‘jaccard_similarity_score‘ from ‘sklearn.metrics‘

一、错误信息

在运行代码时,遇到了一个问题:

---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
Cell In [117], line 1
----> 1 from sklearn.metrics import jaccard_similarity_score
      2 ovr = OneVsRestClassifier(RandomForestClassifier())
      3 ovr.fit(X_train, y_train)

ImportError: cannot import name 'jaccard_similarity_score' from 'sklearn.metrics' (d:\Anaconda\envs\PyTorch\lib\site-packages\sklearn\metrics\__init__.py)

在这里插入图片描述

问题代码为:

from sklearn.metrics import jaccard_similarity_score
ovr = OneVsRestClassifier(RandomForestClassifier())
ovr.fit(X_train, y_train)
Y_pred_ovr = ovr.predict(X_test)
ovr_jaccard_score = jaccard_similarity_score(y_test, Y_pred_ovr)
ovr_jaccard_score

二、问题分析

一开始以为是scikit-learn安装出了问题,尝试直接定义jaccard,修改sklearn为scikit-learn都不行,找到好久才发现是引入的包的文件名不对。

2.1 报错:

from sklearn.metrics import jaccard_similarity_score

2.2 原因

新的scikit-learn不再自动修改语法。通过路径找到存放jaccard的py文件,发现其中的jaccard函数名称为jaccard_score

2.3 修改

from sklearn.metrics import jaccard_similarity_score改为 from sklearn.metrics import jaccard_score

三、问题再临

我们按照上面的方式修改后,还是出现报错:

ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted'].

在这里插入图片描述

原因:二分类时average参数默认是binary;多分类时,可选参数有micro、macro、weightedsamples

修改:将jaccard_score(y_true, y_pred)改为jaccard_score(y_true, y_pred,average='micro)

四、问题解决

修改后的代码为:

from sklearn.metrics import jaccard_score
ovr = OneVsRestClassifier(RandomForestClassifier())
ovr.fit(X_train, y_train)
Y_pred_ovr = ovr.predict(X_test)
ovr_jaccard_score = jaccard_score(y_test, Y_pred_ovr, averag = 'micro')
ovr_jaccard_score

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值