一、算法
多标签分类的适用场景较为常见,比如,一份歌单可能既属于标签旅行也属于标签驾车。有别于多分类分类,多标签分类中每个标签不是互斥的。多标签分类算法大概有两类流派:
- 采用One-vs-Rest(或其他方法)组合多个二分类基分类器;
- 改造经典的单分类器,比如,AdaBoost-MH与ML-KNN。
1.1 One-vs-Rest
基本思想:为每一个标签 y i y_i yi构造一个二分类器,正样本为含有标签 y i y_i yi的实例,负样本为不含有标签 y i y_i yi的实例;最后组合 N N N个二分类器结果得到 N N N维向量,可视作为在多标签上的得分。
1.2 AdaBoost-MH



1.3 ML-KNN

文章介绍了多标签分类的场景和特点,对比了与多分类的区别。重点讲解了三种算法:One-vs-Rest策略,它为每个标签构建二分类器;AdaBoost-MH,一种适应多标签的增强学习算法;以及ML-KNN,基于KNN的多标签分类方法。这些算法用于处理实例可同时属于多个类别的问题。
14万+

被折叠的 条评论
为什么被折叠?



