【机器学习】机器学习实验一:线性回归(详细代码展示)

一、前言

本次实验我将分为两个部分进行讲解,第一部分用Numpy进行从零实现,对于算法公式尝试从零定义,深入理解线性回归的知识。

代码+数据集地址:

https://mbd.pub/o/bread/ZJWal5dx

在这里插入图片描述

二、梯度下降理解算法

2.1 单变量线性回归

数据集展示:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

批量梯度下降的公式如下:

在这里插入图片描述
在这里插入图片描述

随机梯度下降函数也在每个训练迭代中输出一个代价,最后转换成向量,我们可以绘制,来直观的展现变化情况

需要注意的是,代价总是降低的,这是凸优化问题的一个例子

在这里插入图片描述

预测情况如下:

在这里插入图片描述
使用正规方程:

在这里插入图片描述

正规方程的推导过程:

在这里插入图片描述
在这里插入图片描述

2.2 多变量线性回归

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
数据拟合情况:

在这里插入图片描述
在这里插入图片描述
查看一下训练过程:

在这里插入图片描述

2.3 正则化

2.3.1 L2正则化(Ridge回归)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.3.2 L1正则化(Lasso回归)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、实验一详细代码案例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值