机器学习实验1——线性回归实验

目录

[实验名称]                        线性回归实验

[实验目的]

[实验要求]

[实验原理]

[实验内容]

一. 单变量线性回归

二. 多变量线性回归

[实验代码和结果]

一.单变量线性回归

1. 实验代码

2. 结果

二.多变量线性回归

1. 实验代码

2. 结果

[小结或讨论]

(1)线性回归三大要素

(2)单变量线性回归

(3)多变量线性回归


[实验名称]                        线性回归实验

[实验目的]

  1. 熟悉和掌握单变量线性回归算法
  2. 熟悉和掌握批处理梯度下降算法
  3. 熟悉和掌握多变量线性回归算法

[实验要求]

  1. 采用Python、Matlab等高级语言进行编程,推荐优先选用Python语言
  2. 核心模型和算法需自主编程实现,不得直接调用Scikit-learn、PyTorch等成熟框架的第三方实现
  3. 代码可读性强:变量、函数、类等命名可读性强,包含必要的注释

     本实验所使用的数据集下载地址为:

     链接:https://pan.baidu.com/s/1pNmQbPfeFOyRHMdyed4KIQ?pwd=ron1 
     提取码:ron1

[实验原理]

  • Y=wx+b
  • 构建线性模型,以最小平方误差为目标函数,使用梯度下降法不断更新参数。
  • 而计算梯度时,梯度g=(w^{t}x-y)x

[实验内容]

一. 单变量线性回归

1.采用数据集 “data/regress_data1.csv”进行单变量线性回归实验

2.借助matplotlib 画出原始数据分布的散点图(x=“人口”,y=”收益”)

3.以最小平方误差为目标函数,构造模型的损失(误差)计算函数:

                      J(w)=\frac{1}{2m}\sum_{m}^{i=1}(h(x^{(i)})-y^{(i)})^{2}

其中,h(x)=w^{T}X=w_{0}x_{0}+w_{1}x_{1}+...+w_{n}x_{n}

4.实现批量梯度下降算法(Batch Gradient Decent)用于优化线性回归模型:

其中,w_{j}^{'}=w_{j}-\alpha \frac{1}{m}\sum_{i=1}^{m}\frac{\partial }{\partial w_{j}}J(w)

其中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷失夜原

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值