目录
[实验名称] 线性回归实验
[实验目的]
- 熟悉和掌握单变量线性回归算法
- 熟悉和掌握批处理梯度下降算法
- 熟悉和掌握多变量线性回归算法
[实验要求]
- 采用Python、Matlab等高级语言进行编程,推荐优先选用Python语言
- 核心模型和算法需自主编程实现,不得直接调用Scikit-learn、PyTorch等成熟框架的第三方实现
- 代码可读性强:变量、函数、类等命名可读性强,包含必要的注释
本实验所使用的数据集下载地址为:
链接:https://pan.baidu.com/s/1pNmQbPfeFOyRHMdyed4KIQ?pwd=ron1
提取码:ron1
[实验原理]
- 构建线性模型,以最小平方误差为目标函数,使用梯度下降法不断更新参数。
- 而计算梯度时,梯度
[实验内容]
一. 单变量线性回归
1.采用数据集 “data/regress_data1.csv”进行单变量线性回归实验
2.借助matplotlib 画出原始数据分布的散点图(x=“人口”,y=”收益”)
3.以最小平方误差为目标函数,构造模型的损失(误差)计算函数:
其中,
4.实现批量梯度下降算法(Batch Gradient Decent)用于优化线性回归模型:
其中,
其中,