总结的Boosting的参数如下:
Gradient Boosted(-ing) Decision Tree:
- 构造一系列决策树,每棵树尝试去纠正之前的错误
- 每棵树学习的是之前所有树的结论和残差,拟合得到一个当前的树。整个迭代过程生成的树的累加就是GBDT
- 学习率决定新的树去纠正错误的程度:
- 高学习率:生成复杂的树
- 低学习率:生成简单的树
学习率降低,会缩小每棵树的贡献,让每棵树都不要太强。
因此,当我们的GBDT模型发生过拟合的时候,可以尝试降低学习率!
总结的Boosting的参数如下:
Gradient Boosted(-ing) Decision Tree:
学习率降低,会缩小每棵树的贡献,让每棵树都不要太强。
因此,当我们的GBDT模型发生过拟合的时候,可以尝试降低学习率!