总结的Boosting的参数如下:

Gradient Boosted(-ing) Decision Tree:
- 构造一系列决策树,每棵树尝试去纠正之前的错误
- 每棵树学习的是之前所有树的结论和残差,拟合得到一个当前的树。整个迭代过程生成的树的累加就是GBDT
- 学习率决定新的树去纠正错误的程度:
- 高学习率:生成复杂的树
- 低学习率:生成简单的树
学习率降低,会缩小每棵树的贡献,让每棵树都不要太强。
因此,当我们的GBDT模型发生过拟合的时候,可以尝试降低学习率!
Boosting算法如GBDT通过构建一系列决策树来逐步改进预测。每棵树专注于减少前一棵树的误差,学习率决定了新树对总预测的影响:高学习率产生复杂树,低学习率则生成简单树。降低学习率能防止单棵树过度影响结果,有助于缓解过拟合问题。
总结的Boosting的参数如下:

Gradient Boosted(-ing) Decision Tree:
学习率降低,会缩小每棵树的贡献,让每棵树都不要太强。
因此,当我们的GBDT模型发生过拟合的时候,可以尝试降低学习率!
2803
1161
4269
3821
7595

被折叠的 条评论
为什么被折叠?