【机器学习】如果你发现你的GBDT模型过拟合了?该从那个参数入手?—降低学习率

Boosting算法如GBDT通过构建一系列决策树来逐步改进预测。每棵树专注于减少前一棵树的误差,学习率决定了新树对总预测的影响:高学习率产生复杂树,低学习率则生成简单树。降低学习率能防止单棵树过度影响结果,有助于缓解过拟合问题。
摘要由CSDN通过智能技术生成

总结的Boosting的参数如下:

在这里插入图片描述

Gradient Boosted(-ing) Decision Tree:

  • 构造一系列决策树,每棵树尝试去纠正之前的错误
  • 每棵树学习的是之前所有树的结论和残差,拟合得到一个当前的树。整个迭代过程生成的树的累加就是GBDT
  • 学习率决定新的树去纠正错误的程度:
  1. 高学习率:生成复杂的树
  2. 低学习率:生成简单的树

学习率降低,会缩小每棵树的贡献,让每棵树都不要太强。

因此,当我们的GBDT模型发生过拟合的时候,可以尝试降低学习率!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值