【机器学习】机器学习算法的随机数据生成


参考文献:

https://www.cnblogs.com/pinard/p/6047802.html

一、前言

在学习机器学习算法的过程时,我们经常需要数据来验证算法,调试参数。但是找到一组十分合适某种特定算法类型的数据样本却不那么容易。

Numpy, Scikit-Learn都提供了随机数据生成的功能,我们可以自己生成适合某一种模型的数据,用随机数据来做清洗,归一化,转换,然后选择模型与算法做拟合和预测。下面对scikit-learn和numpy生成数据样本的方法做一个总结。

完整代码参见github:

https://github.com/ljpzzz/machinelearning/blob/master/mathematics/random_data_generation.ipynb

二、numpy随机数据生成API

numpy比较适合用来生产一些简单的抽样数据。API都在random类中,常见的API有:

2.1 rand( d 0 d_0 d0, d 1 d_1 d1, …, d n d_n dn)

用来生成 d 0 d_0 d0 × \times × d 1 d_1 d1 × \times × ⋯ \cdots d n d_n dn维的数组 。数组的值在[0,1)之间。

例如: np.random.rand(3,2,2),输出如下3×2×2的数组

array([[[ 0.49042678,  0.60643763],
        [ 0.18370487,  0.10836908]],

       [[ 0.38269728,  0.66130293],
        [ 0.5775944 ,  0.52354981]],

       [[ 0.71705929,  0.89453574],
        [ 0.36245334,  0.37545211]]]) 

2.2 randn(( d 0 d_0 d0, d 1 d_1 d1, …, d n d_n dn)

用来生成 d 0 × d 1 × ⋯ × d n d_0\times d_1 \times \cdots \times d_n d0×d1××dn维的数组。不过数组的值服从 N ( 0 , 1 ) N(0,1) N(0,1)的标准正态分布。

例如:np.random.randn(3,2),输出如下 3 × 2 3\times 2 3×2的数组,这些值是 N ( 0 , 1 ) N(0,1) N(0,1)的抽样数据。

array([[-0.5889483 , -0.34054626],
       [-2.03094528, -0.21205145],
       [-0.20804811, -0.97289898]])

如果需要服从 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的正态分布,只需要在randn上每个生成的值 x x x上做变换 σ × x + μ \sigma \times x + \mu σ×x+μ即可。

例如: 2*np.random.randn(3,2) + 1,输出如下 3 × 2 3\times 2 3×2的数组,这些值是 N ( 1 , 4 ) N(1,4) N(1,4)的抽样数据。

array([[ 2.32910328, -0.677016  ],
       [-0.09049511,  1.04687598],
       [ 2.13493001,  3.30025852]])

2.3 randint(low[, high, size])

生成随机的大小为size的数据,size可以为整数,为矩阵维数,或者张量的维数。值位于半开区间 [low, high)。

例如:np.random.randint(3, size=[2,3,4])返回维数维 2 × 3 × 4 2\times 3\times 4 2×3×4的数据,取值范围为最大值为3的整数。

array([[[2, 1, 2, 1],
     [0, 1, 2, 1],
     [2, 1, 0, 2]],

     [[0, 1, 0, 0],
      [1, 1, 2, 1],
     [1, 0, 1, 2]]])

再比如: np.random.randint(3, 6, size=[2,3]) 返回维数为2x3的数据。取值范围为[3,6)。

array([[4, 5, 3],
    [3, 4, 5]])

2.4 random_integers(low[, high, size])

和上面的randint类似,区别在于取值范围是闭区间[low, high]。

2.5 random_sample([size])

返回随机的浮点数,在半开区间 [ 0.0 , 1.0 ) [0.0, 1.0) [0.0,1.0)。如果是其他区间 [ a , b ) [a,b) [a,b),可以加以转换 ( b − a ) × (b - a) \times (ba)× random_sample([size]) + a a a

例如: (5-2)*np.random.random_sample(3) + 2 返回[2,5)之间的3个随机数。

array([ 2.87037573,  4.33790491,  2.1662832 ]) 

三、scikit-learn随机数据生成API介绍

scikit-learn生成随机数据的API都在datasets类之中,和numpy比起来,可以用来生成适合特定机器学习模型的数据。常用的API有:

  • 用make_regression生成回归模型的数据;
  • 用make_hastie_10_2,make_classification或者make_multilabel_classification生成分类模型数据;
  • 用make_blobs生成聚类模型数据;
  • 用make_gaussian_quantiles生成分组多维正态分布的数据。

四、scikit-learn随机数据生成实例

4.1 回归模拟随机数据

这里我们使用make_regression生成回归模型数据。几个关键参数有 n_samples(生成样本数), n_features(样本特征数),noise(样本随机噪音)和 coef(是否返回回归系数)。例子代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_regression
# X为样本特征,y为样本输出, coef为回归系数,共1000个样本,每个样本1个特征
X, y, coef =make_regression(n_samples=1000, n_features=1,noise=10, coef=True)
# 画图
plt.scatter(X, y,  color='black')
plt.plot(X, X*coef, color='blue',linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()

输出的图如下:

在这里插入图片描述

4.2 分类模拟随机数据

这里我们用 make_classification 生成三元分类模型数据。几个关键参数有 n_samples(生成样本数), n_features(样本特征数), n_redundant(冗余特征数)和 n_classes(输出的类别数),例子代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_classification
# X1为样本特征,Y1为样本类别输出, 共400个样本,每个样本2个特征,输出有3个类别,没有冗余特征,每个类别一个簇
X1, Y1 = make_classification(n_samples=400, n_features=2, n_redundant=0,
                             n_clusters_per_class=1, n_classes=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)
plt.show()

输出的图如下:

在这里插入图片描述

4.3 聚类模型随机数据

这里我们用make_blobs生成聚类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),centers(簇中心的个数或者自定义的簇中心) 和 cluster_std(簇数据方差,代表簇的聚合程度)。例子如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共3个簇,簇中心在[-1,-1], [1,1], [2,2], 簇方差分别为[0.4, 0.5, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [1,1], [2,2]], cluster_std=[0.4, 0.5, 0.2])
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.show()

输出的图如下:

在这里插入图片描述

4.4 分组正态分布混合数据

我们用 make_gaussian_quantiles 生成分组多维正态分布的数据。几个关键参数有 n_samples(生成样本数), n_features(正态分布的维数),mean(特征均值),cov(样本协方差的系数), n_classes(数据在正态分布中按分位数分配的组数)。例子如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_gaussian_quantiles
#生成2维正态分布,生成的数据按分位数分成3组,1000个样本,2个样本特征均值为1和2,协方差系数为2
X1, Y1 = make_gaussian_quantiles(n_samples=1000, n_features=2, n_classes=3, mean=[1,2],cov=2)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)

输出图如下:

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
机器学习和深度学习是目前人工智能领域的两个重要分支。下面我将介绍一些主流的机器学习算法和深度学习算法。 机器学习主流算法: 1. 线性回归:用于建立输入特征与输出之间的线性关系模型。 2. 逻辑回归:用于分类问题,通过拟合一个逻辑函数来预测样本的类别。 3. 决策树:通过构建树形结构来进行分类和回归分析。 4. 随机森林:由多个决策树组成的集成学习算法,用于解决分类和回归问题。 5. 支持向量机:通过寻找一个最优超平面来进行分类和回归分析。 6. K近邻算法:通过计算样本之间的距离来进行分类和回归分析。 7. 聚类算法:如K均值聚类、层次聚类等,用于将数据集划分为不同的类别或簇。 深度学习主流算法: 1. 神经网络:由多个神经元组成的网络结构,通过反向传播算法进行训练和学习。 2. 卷积神经网络(CNN):主要用于图像识别和计算机视觉任务,通过卷积层和池化层提取图像特征。 3. 循环神经网络(RNN):主要用于序列数据的处理,具有记忆功能,适用于自然语言处理和语音识别等任务。 4. 长短期记忆网络(LSTM):一种特殊的RNN结构,能够更好地处理长序列数据。 5. 生成对抗网络(GAN):由生成器和判别器组成的对抗性模型,用于生成逼真的样本。 6. 自编码器:通过学习数据的低维表示来进行数据压缩和特征提取。 7. 强化学习:通过智能体与环境的交互学习最优策略,常用的算法包括Q-learning和深度强化学习算法等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值