【计算机视觉 | CNN】Image Model Blocks的常见算法介绍合集(四)

一、Dilated Bottleneck with Projection Block

Dilated Bottleneck with Projection Block 是 DetNet 卷积神经网络架构中使用的图像模型块。 它采用带有扩张卷积的瓶颈结构来有效地扩大感受野。 它使用 1x1 卷积来确保空间大小保持固定。

在这里插入图片描述

二、NVAE Generative Residual Cell

NVAE 生成残差单元是一个跳跃连接块,用作生成器 NVAE 架构的一部分。 残存细胞扩大通道数E应用深度可分离卷积之前的时间,然后将其映射回C渠道。 设计动机是通过增加网络的感受野来帮助对数据中的远程相关性进行建模,这解释了扩展路径,同时也解释了使用深度卷积来控制参数计数。

在这里插入图片描述

三、NVAE Encoder Residual Cell

NVAE 编码器残差单元是编码器 NVAE 架构中使用的残差连接块。 它应用了两个系列的 BN-Swish-Conv 层,而不改变通道数。

在这里插入图片描述

四、Bottleneck Transformer Block

Bottleneck Transformer Block 是 Bottleneck Transformer 中使用的块,它用多头自注意力 (MHSA) 替换残差块中的空间 3 × 3 卷积层。

在这里插入图片描述

五、Spatial Feature Transform

在这里插入图片描述
在这里插入图片描述

六、Big-Little Module

Big-Little 模块是具有两个分支的图像模型块:每个分支代表一个来自深度模型的单独块和一个不太深的对应块。 它们被提议作为 BigLittle-Net 架构的一部分。 这两个分支通过线性组合和单位权重融合。 这两个分支被称为大分支(低分辨率下更多层和通道)和小分支(高分辨率下更少层和通道)。

在这里插入图片描述

七、Scale Aggregation Block

在这里插入图片描述
在这里插入图片描述

八、Multiscale Dilated Convolution Block

多尺度扩张卷积块是一种 Inception 风格的卷积块,其动机是图像特征自然地出现在多个尺度上,网络的表达能力与它可以表示的函数范围除以参数总数成正比,再除以 希望有效地扩展网络的感受野。 多尺度扩张卷积 (MDC) 块应用单个 F × F F \times F F×F在多个扩张因子下进行过滤,然后对每个扩张过滤器的输出执行加权元素求和,从而允许网络以最小的参数增加同时学习一组特征以及这些特征出现的相关尺度。 这也快速扩展了网络的感受野,而无需增加深度或参数数量。

在这里插入图片描述

九、XCiT Layer

XCiT 层是 XCiT 架构的主要构建块,它使用交叉协方差注意算子作为其主要操作。 XCiT 层由三个主要块组成,每个块前面都有 LayerNorm,后面跟着一个残差连接:(i) 核心交叉协方差注意 (XCA) 操作,(ii) 局部补丁交互 (LPI) 模块,以及 (iii) 前馈网络(FFN)。 通过转置查询-键交互,XCA 的计算复杂度与数据元素的数量 N 呈线性关系,而不是像传统的自注意力机制那样呈二次方关系。

在这里插入图片描述

十、Local Patch Interaction

本地补丁交互(LPI)是一个用于 XCiT 层的模块,用于实现补丁之间的显式通信。 LPI 由两个深度方向的 3×3 卷积层组成,其间具有 Batch Normalization 和 GELU 非线性。 由于其深度结构,LPI 块在参数方面的开销可以忽略不计,并且在推理期间的吞吐量和内存使用方面的开销也有限。

在这里插入图片描述

十一、MLP-Mixer Layer

Mixer 层是 Tolstikhin 等人提出的 MLP-Mixer 架构中使用的层。 al (2021) 用于计算机视觉。 混合器层纯粹由 MLP 组成,没有卷积或注意力。 它接受嵌入图像块(令牌)的输入,其输出与其输入具有相同的形状,类似于 Vision Transformer 编码器。 正如其名称所示,Mixer 层通过其包含该层的“令牌混合”和“通道混合”MLP 来“混合”令牌和通道。 它利用了其他架构先前的技术,例如层归一化、跳跃连接和正则化方法。

在这里插入图片描述

十二、Style-based Recalibration Module

基于风格的重新校准模块 (SRM) 是一个用于卷积神经网络的模块,它通过利用中间特征图的风格来自适应地重新校准中间特征图。 SRM首先通过风格池化从特征图的每个通道中提取风格信息,然后通过与通道无关的风格集成来估计每个通道的重新校准权重。 通过将个体风格的相对重要性纳入特征图中,SRM 旨在增强 CNN 的表示能力。

SRM的整体结构如右图所示。 它由两个主要组件组成:样式池和样式集成。 风格池算子通过总结跨空间维度的特征响应来从每个通道提取风格特征。 接下来是风格集成运算符,它通过通道操作利用风格特征来生成特定于示例的风格权重。 样式权重最终重新校准特征图以强调或抑制其信息。

在这里插入图片描述

十三、Two-Way Dense Layer

双向密集层是 PeleeNet 架构中使用的图像模型块。 受 GoogLeNet 的启发,使用 2 路密集层来获得不同尺度的感受野。 该层的一种方式使用 3x3 内核大小。 该层的另一种方式使用两个堆叠的 3x3 卷积来学习大型物体的视觉模式。

在这里插入图片描述

十四、SqueezeNeXt Block

SqueezeNeXt 块是 SqueezeNeXt 架构中使用的两级瓶颈模块,用于减少 3 × 3 卷积的输入通道数。 我们用可分离卷积进行分解,以进一步减少参数数量(橙色部分),然后是 1 × 1 扩展模块。

在这里插入图片描述

十五、Extremely Efficient Spatial Pyramid of Depth-wise Dilated Separable Convolutions

EESP 单元(即深度方向扩张可分离卷积的极其高效空间金字塔)是专为边缘设备设计的图像模型块。 它被提议作为 ESPNetv2 CNN 架构的一部分。

该构建块基于减少-拆分-转换-合并策略。 EESP 单元首先使用分组逐点卷积将高维输入特征图投影到低维空间,然后使用具有不同扩张率的深度扩张可分离卷积并行学习表示。 每个分支中不同的扩张率允许 EESP 单元从大的有效感受野中学习表示。 为了消除扩张卷积引起的网格伪影,EESP 使用分层特征融合 (HFF) 来融合特征图。

在这里插入图片描述

十六、CSPResNeXt Block

CSPResNeXt Block 是一个扩展的 ResNext Block,我们将基础层的特征图划分为两部分,然后通过跨阶段层次结构将它们合并。 使用拆分和合并策略允许更多的梯度流通过网络。

在这里插入图片描述

十七、Elastic Dense Block

弹性密集块是一个跳过连接块,它通过在每一层的并行分支中进行下采样和上采样来修改密集块,以便让网络从数据缩放策略中学习,其中输入在每层中以不同的分辨率进行处理。 之所以称为“弹性”,是因为网络中的每一层都可以通过软策略灵活选择最佳规模。

在这里插入图片描述

十八、DVD-GAN GBlock

DVD-GAN GBlock 是 DVD-GAN 架构中用于视频生成的生成器的残差块。

在这里插入图片描述

十九、DVD-GAN DBlock

DVD-GAN DBlock 是 DVD-GAN 架构中用于视频生成的鉴别器的残差块。 与常规残差块不同,由于应用于视频中的多个帧,因此采用 3D 卷积。

在这里插入图片描述

二十、Local Relation Network

局部关系网络(LR-Net)是一个用局部关系层构建的网络,代表特征图像提取器。 该特征提取器根据局部像素对的组成关系自适应地确定聚合权重。

在这里插入图片描述

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值