一、Systematic review of image segmentation using complex networks
本文介绍了使用复杂网络的各种图像分割方法。
图像分割是图像分析中的重要步骤之一,因为它有助于分析和理解复杂的图像。起初,它试图根据它在图像分割中的使用方式对复杂网络进行分类。
在计算机视觉和图像处理应用中,图像分割对于分析具有不规则形状、纹理或重叠边界的复杂图像至关重要。高级算法利用机器学习、聚类、边缘检测和区域增长技术。图论原理与基于社区检测的方法相结合,可以更精确地分析和解释复杂图像。混合方法结合了多种技术,可实现全面、稳健的分割,从而改善计算机视觉和图像处理任务的结果。
https://arxiv.org/abs/2401.02758
二、Image Segmentation in Foundation Model Era: A Survey
图像分割是计算机视觉中一项长期存在的挑战,几十年来不断研究,N-Cut、FCN 和 MaskFormer 等开创性算法证明了这一点。随着基础模型 (FM) 的出现,当代分割方法通过调整 FM(例如 CLIP、Stable Diffusion、DINO)进行图像分割或开发专用的分割基础模型(例如 SAM)进入了一个新的时代。这些方法不仅提供卓越的分段性能,还预示着在深度学习环境中前所未有的新发现的分段功能。然而,目前的图像分割研究缺乏对与这些进步相关的独特特征、挑战和解决方案的详细分析。本调查旨在通过对以 FM 驱动的图像分割为中心的前沿研究进行全面审查来填补这一空白。我们研究了两条基本研究方向——通用图像分割(即语义分割、实例分割、全景分割)和可提示图像分割(即交互式分割、引用分割、少数镜头分割)——通过描述它们各自的任务设置、背景概念和关键挑战。此外,我们还提供了对 CLIP、Stable Diffusion 和 DINO 等 FM 中分割知识的出现的见解。本文对 300 多种细分方法进行了详尽的概述,以概括当前研究工作的广度。随后,我们参与了对开放问题和未来研究潜在途径的讨论。我们设想这项新鲜、全面和系统的调查将催化高级图像分割系统的发展。
https