一、ShadowSense: Unsupervised Domain Adaptation and Feature Fusion for Shadow-Agnostic Tree Crown Detection from RGB-Thermal Drone Imagery
由于森林树冠的密度和各种环境变化(例如,重叠的树冠、遮挡和不同的照明条件),从遥感数据中准确检测单个树冠是一项重大挑战。此外,缺乏用于训练稳健模型的数据增加了有效研究复杂森林条件的另一个限制。本文提出了一种检测阴影树冠的新方法,并提供了一个具有挑战性的数据集,其中包含大约 50k 对 RGB 热图像,以促进未来照明不变检测的研究。所提出的方法 (ShadowSense) 是完全自我监督的,利用没有源域注释的域对抗训练进行特征提取,并利用特征金字塔网络的前景特征对齐来适应域不变表示,分别通过关注可见的前景区域来适应域不变表示。然后,它融合两种模式的互补信息,以有效地改进 RGB 训练检测器的预测并提高整体准确性。广泛的实验表明,所提出的方法优于基线 RGB 训练的检测器和依赖于无监督域适应或早期图像融合的最先进的技术。
https://arxiv.org/abs/2310.16212v1
二、Implicit neural representation for change detection
由于空间覆盖范围的差异和采集系统中存在噪声,识别在同一地理区域的两个不同时间段内获得的一对 3D 航空 LiDAR 点云的变化是一项重大挑战。检测点云变化的最常用方法基于监督方法,这需要大量标记数据,而这些数据在实际应用中通常不可用。为了解决这些问题,我们提出了一种无监督方法,它由两个部分组成:用于连续形状重建的隐式神经表示 (INR) 和用于对变化进行分类的高斯混合模型。INR 为编码双时相点云提供与网格无关的表示,具有无与伦比的空间支持,可以对其进行正则化以增强高频细节并减少噪声。在任意空间尺度上比较每个时间戳的重建,从而显著提高检测能力。我们将我们的方法应用于包含城市扩张的模拟 LiDAR 点云的基准数据集。该数据集包含各种具有挑战性的场景,分辨率、输入模式和噪声水平各不相同。这使得全面的多场景评估成为可能,将我们的方法与当前最先进的方法进行比较。我们在 intersection over union 指标上比以前的方法高出 10%。此外&#x